Чтобы доказать равнобедренность треугольника, можно найти длины векторов (сторон треугольника)) векторCD {4; 3} ---> |векторCD| = √(16+9) = 5 векторСЕ {3; -4} ---> |векторСЕ| = √(9+16) = 5 векторDE {-1; -7} ---> |векторDE| = √(1+49) = √50 = 5√2 т.к. CD=CE, биссектриса из вершины С будет и высотой и медианой... ее можно найти и по т.Пифагора √(25-25/2) = √(25/2) = 5/√2 = 5√2 / 2 или методом координат... середина отрезка ED --точка Т-- будет иметь координаты Т((5+6)/2; (5-2)/2) ---> T(5.5; 1.5) векторСТ {3.5; -0.5} |векторСТ| = √((7/2)² + (1/2)²) = √(50/4) = 5√2 / 2
можно найти длины векторов (сторон треугольника))
векторCD {4; 3} ---> |векторCD| = √(16+9) = 5
векторСЕ {3; -4} ---> |векторСЕ| = √(9+16) = 5
векторDE {-1; -7} ---> |векторDE| = √(1+49) = √50 = 5√2
т.к. CD=CE, биссектриса из вершины С будет и высотой и медианой...
ее можно найти и по т.Пифагора
√(25-25/2) = √(25/2) = 5/√2 = 5√2 / 2
или методом координат...
середина отрезка ED --точка Т-- будет иметь координаты
Т((5+6)/2; (5-2)/2) ---> T(5.5; 1.5)
векторСТ {3.5; -0.5}
|векторСТ| = √((7/2)² + (1/2)²) = √(50/4) = 5√2 / 2
Объяснение:
12)
СО=1/2*АВ=1/2*18=9 см радиус
<СОВ=2*<САВ=2*20°=40° центральный угол.
Sсегм=1/2*СО²(π*40°/180°-sin<COB)=
=1/2*9²*(2π/9-sin40°)=1/2*81*(2π/9-0,6427)=
=40,5(2π/9-0,6427)=81π/9-26,02935=
=9*3,14-26,02935=28,26-26,02935≈
≈2,23 см²
ответ: 2,23см²
13)
R=1/2*AB=1/2*4=2 ед радиус полукруга
Sп.кр.=1/2*πR²=1/2*π*2²=2π ед²
r=1/2*R=1/2*2=1 ед радиус меньшей окружности.
Sм.кр.=πr²=π*1²=π ед²
Sз.ф.=Sп.кр.-Sм.кр.=2π-π=π ед²
ответ: площадь заданной фигуры равно π ед²
Обозначения:
Sп.кр- площадь полукруга
Sм.кр.- площадь меньшего круга
Sз.ф.- площадь заданной фигуры
14)
S(ABCDEF)=6*AB²√3/4=6*6²√3/4=54√3≈
≈93,53eд²
Радиус равен стороне шестиугольника
R=6ед.
Sч.кр=4/6*πR²=4/6*6²*3,14=24*3,14≈
≈75,36 ед²
Sз.ф.=S(ABCDEF)-Sч.кр.=93,53-75,36=
=18,2 ед²
ответ: 18,2 ед²
Обозначения
Sч.кр.- площадь части круга.
Sз.ф.- площадь заданной фигуры