Один внутренний и и один внешний угол многоугольника, взятые при одной вершине, составляют развернутый угол. ⇒ Их сумма равна 180°. Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы. Если внешний угол принять равным х, то внутренний будет х+100°⇒ х+х+100°=180° 2х=80° х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим:
Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы.
Если внешний угол принять равным х, то внутренний будет х+100°⇒
х+х+100°=180°
2х=80°
х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) φ, если R = 2r
2.Так как параллелепипед описан вокруг цилиндра, то в основании параллелепипеда лежит квадрат со стороной равной диаметру цилиндра, т.е. . Тогда площадь квадрата (основания) будет равна , а объем
3.Так как по условию призма правильная, то CC1⊥DC и DC⊥AD. Так что по теореме о трех перпендикулярах C1D⊥AD. Далее, в прямоугольном ΔAС1D по теореме Пифагора находим: