В прямоугольной трапеции ABCD с основаниями BC и AD и высотой AB диагонали AC и BD перпендикулярны друг другу . Известно отношение оснований BC : AD = m : n . Найдите отношение длин диагоналей AC : BD.
Пусть BC = mx и AD = nx. Из вершины С проведём прямую параллельной диагонали BD до пересечения прямой на продолжении основания AD, AC ⊥ CE.
Из вершины угла С проведем высоту CF.
Из прямоугольного треугольника ACE, каждый катет есть среднее пропорциональное между проекцией катета и гипотенузой:
При пересечении секущей двух параллельных прямых образуется: (смотри рисунок во вложении) • Соответственные углы Соответственные углы это два угла, один во внешней области, один во внутренней области, и которые лежат на одной стороне секущей. Соответственные углы равны.
• Односторонние углы: Односторонние углы- это два угла во внутренней области параллельных прямых и по одну сторону. Односторонние углы в сумме равны 180°
• Накрест лежащие: Внутренние накрест лежащие углы - это два угла во внутренней области параллельных прямых и на разных сторонах секущей. Внешние накрест лежащие углы это два угла во внешней области параллельных прямых и на разных сторонах секущей. Накрест лежащие углы попарно равны.
В прямоугольной трапеции ABCD с основаниями BC и AD и высотой AB диагонали AC и BD перпендикулярны друг другу . Известно отношение оснований BC : AD = m : n . Найдите отношение длин диагоналей AC : BD.
Пусть BC = mx и AD = nx. Из вершины С проведём прямую параллельной диагонали BD до пересечения прямой на продолжении основания AD, AC ⊥ CE.
Из вершины угла С проведем высоту CF.
Из прямоугольного треугольника ACE, каждый катет есть среднее пропорциональное между проекцией катета и гипотенузой:
Следовательно,
(смотри рисунок во вложении)
• Соответственные углы
Соответственные углы это два угла, один во внешней области, один во внутренней области, и которые лежат на одной стороне секущей. Соответственные углы равны.
• Односторонние углы:
Односторонние углы- это два угла во внутренней области параллельных прямых и по одну сторону. Односторонние углы в сумме равны 180°
• Накрест лежащие:
Внутренние накрест лежащие углы - это два угла во внутренней области параллельных прямых и на разных сторонах секущей.
Внешние накрест лежащие углы это два угла во внешней области параллельных прямых и на разных сторонах секущей.
Накрест лежащие углы попарно равны.