1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О). Точка О является центром вписанной и описанной окружностей. Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC). Радиус вписанной окружности треугольника оN = DO = 6. Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12. Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2. Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6. Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.
1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О).
Точка О является центром вписанной и описанной окружностей.
Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC).
Радиус вписанной окружности треугольника оN = DO = 6.
Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12.
Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2.
Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6.
Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.
2) с²=а²+в²⇒в²=с²-а²; в²= 8²-3²=√64-√9=√55;
3)АО= АС=[tex] \frac{1}{2} *6=3 см;
ВО=[tex] \frac{1}{2} ВD= [tex] \frac{1}{2} *8= 4 см;(рис.1)
4)пусть а=5см b =4 см с- диагональ по теореме пифагора с²=a²+b²= √25+√16=√41;
5)По формуле герона площадь равна
p - полупериметр, a, b, c - стороны(рис.2);
6)Рисуем трапецию АВСД
ВС = 6 см
АD = 14 см
АВ = СD = 5 см
Из вершины В опускаем высоту ВК.
АК = (АD - ВС) / 2 = (14 - 6) / 2 = 4 см
По теореме Пифагора высота
ВК = √AB² - √AK² = √(5² - 4²) = 3 см
Площадь
S = (АD + ВС) * ВК / 2 = (14 + 6) * 3 / 2 = 30 кв. см