Если продолжить KL и MN то эти линии пересекутся на продолжении ребра B1C1 в точке, которую обозначим O. Рассмотрим положение этой точки в плоскости грани BCC1B1. Легко увидеть, что C1O равна половине длины ребра куба. Аналогичное наблюдение можно сделать и из анализа грани A1B1C1D1. Из симметрии следует что треугольник ONL - равнобедренный с основанием NL. Длина этого основания по теореме Пифагора равна корень(a*a+a*a)/2 = a/корень(2). Длины боковых сторон так-же a/корень(2). То есть треугольник равносторонний, а искомый угол при его вершине 60 градусов.
Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O.
Теорема доказана