построение. диагональ в1d параллелепипеда лежит в плоскости ав1с1d. точка м также лежит в этой плоскости, так как принадлежит прямой аd. проведем через точку м в плоскости ав1с1d прямую, параллельную b1d до пересечения с продолжением ребра с1в1
в точке р. точка р принадлежит плоскости, содержащей грань вв1с1с. этой же плоскости принадлежит точка n. проведем прямую рn и отметим точки пересечения этой прямой с ребром вв1 (точка q) и продолжением ребра вс (точка т). проведем прямую через точки м и т и на пересечении этой прямой с ребром сd отметим точку r, а на пересечении ее с прямой ав - точку к. через точки к и q проведем прямую и на пересечении этой прямой и ребра аа1 отметим точку s.
итак, все полученные точки принадлежат плоскости, параллельной прямой b1d, поскольку прямая мр, принадлежащая этой же плоскости, параллельна в1d. следовательно, пятиугольник msqnr - искомое сечение.
чтобы определить, в каком отношении точка q делит ребро вв1, надо рассмотреть треугольники npc1 и qpb1, лежащие в плоскости врс1с, содержащей грань вв1с1с.
эти треугольники подобны (так как qb1 параллельна c1n, а
плоскостью α, содержащей прямую BD1 и параллельной прямой AC,
является ромб. а) Докажите, что грань ABCD — квадрат. б) Найдите угол между плоскостями α и BCC1 , если AA1 =6, AB=4.
Объяснение:
а) Проведем а||АС, значит а параллельна диагональному сечению АСС₁А₁⇒ МК||АС.
По условию BMD₁К-ромб, значит D₁В⊥МК по свойству диагоналей ромба и МК||АС. Тогда по т. о 3-х перпендикулярах : если наклонная D₁В перпендикулярна прямой лежащей в плоскости АС , то и проекция DВ⊥АС ( прямой , лежащей в плоскости ). Получили , что в прямоугольнике АВСD диагонали АС⊥DВ ⇒ АВСD -квадрат.
б)Проведем через М и К ( середины ребер) плоскость β║(АВС) , получим точку Н на ребре ВВ₁ , ВН=НВ₁=3 .
Пусть НР⊥ВК, т.к. МН⊥ВВ₁ ⇒ МР⊥ВК по т. о трех перпендикулярах⇒∠МРН-линейный угол данного двугранного.
ΔВНК -прямоугольный, ВК=√(16+9)=5.
ΔВНР≈ΔВНК ( по 2 углам общему и прямому) , значит сходственные стороны пропорциональны :
ответ:
построение. диагональ в1d параллелепипеда лежит в плоскости ав1с1d. точка м также лежит в этой плоскости, так как принадлежит прямой аd. проведем через точку м в плоскости ав1с1d прямую, параллельную b1d до пересечения с продолжением ребра с1в1
в точке р. точка р принадлежит плоскости, содержащей грань вв1с1с. этой же плоскости принадлежит точка n. проведем прямую рn и отметим точки пересечения этой прямой с ребром вв1 (точка q) и продолжением ребра вс (точка т). проведем прямую через точки м и т и на пересечении этой прямой с ребром сd отметим точку r, а на пересечении ее с прямой ав - точку к. через точки к и q проведем прямую и на пересечении этой прямой и ребра аа1 отметим точку s.
итак, все полученные точки принадлежат плоскости, параллельной прямой b1d, поскольку прямая мр, принадлежащая этой же плоскости, параллельна в1d. следовательно, пятиугольник msqnr - искомое сечение.
чтобы определить, в каком отношении точка q делит ребро вв1, надо рассмотреть треугольники npc1 и qpb1, лежащие в плоскости врс1с, содержащей грань вв1с1с.
эти треугольники подобны (так как qb1 параллельна c1n, а
итак, qb1=(1/3)*c1n, c1n=(1/2)*cc1=(1/2)*bb1 => qb1=(1/6)*bb1,
то есть bq/qb1=5/1. это ответ.
объяснение:
Сечением прямоугольного параллелепипеда ABCDA1B1C1D1
плоскостью α, содержащей прямую BD1 и параллельной прямой AC,
является ромб. а) Докажите, что грань ABCD — квадрат. б) Найдите угол между плоскостями α и BCC1 , если AA1 =6, AB=4.
Объяснение:
а) Проведем а||АС, значит а параллельна диагональному сечению АСС₁А₁⇒ МК||АС.
По условию BMD₁К-ромб, значит D₁В⊥МК по свойству диагоналей ромба и МК||АС. Тогда по т. о 3-х перпендикулярах : если наклонная D₁В перпендикулярна прямой лежащей в плоскости АС , то и проекция DВ⊥АС ( прямой , лежащей в плоскости ). Получили , что в прямоугольнике АВСD диагонали АС⊥DВ ⇒ АВСD -квадрат.
б)Проведем через М и К ( середины ребер) плоскость β║(АВС) , получим точку Н на ребре ВВ₁ , ВН=НВ₁=3 .
Пусть НР⊥ВК, т.к. МН⊥ВВ₁ ⇒ МР⊥ВК по т. о трех перпендикулярах⇒∠МРН-линейный угол данного двугранного.
ΔВНК -прямоугольный, ВК=√(16+9)=5.
ΔВНР≈ΔВНК ( по 2 углам общему и прямому) , значит сходственные стороны пропорциональны :
НР:НВ=НК:ВК , НР:3=4:5 , НР=12/5.
ΔМНР -прямоугольный , tg∠МРН=МН:РН , tg∠МРН=20/12=5/3
∠МРН=аrctg(5/3).