То, что ВС делится пополам- очевидно из св-в касательных. Ну да ладно. Сделаем обозначения известного (черным) и неизвестного и допостроения (красным). Опять же из касательных треугольник О1ВО2 - прямоугольный с высотой р. из подобных прямоуг. треуг. АО1М и АО2Н - у/40=(у+40+42)/42 у=1640
из треуг. О1ВО2 р²=40*42
из треуг. АВР (АР- диаметр , значит и гипотенуза) р²= (у+40)*х подставляем у=1640 р²=1680*х приравниваем правые части
1680*х=40*42 х=1 тогда диаметр = 1680+1=1681 а радиус =1681/2=840.5
Примем, что диагонали ромба равны: ВD=12 и АС=16. Сторона основания (ромба) находится по Пифагору: АВ=√(АО²+ВО²)=√(6²+8²)=10. Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96. В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины. Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8. Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6. Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4. В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS. Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3. Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3. ответ: V=204,8.
Ну да ладно. Сделаем обозначения известного (черным) и неизвестного и допостроения (красным).
Опять же из касательных треугольник О1ВО2 - прямоугольный с высотой р.
из подобных прямоуг. треуг. АО1М и АО2Н - у/40=(у+40+42)/42
у=1640
из треуг. О1ВО2 р²=40*42
из треуг. АВР (АР- диаметр , значит и гипотенуза)
р²= (у+40)*х подставляем у=1640
р²=1680*х приравниваем правые части
1680*х=40*42
х=1
тогда диаметр = 1680+1=1681
а радиус =1681/2=840.5
Сторона основания (ромба) находится по Пифагору:
АВ=√(АО²+ВО²)=√(6²+8²)=10.
Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96.
В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины.
Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8.
Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6.
Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4.
В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS.
Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3.
Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3.
ответ: V=204,8.