1. Описать окружность можно только около равнобедренной трапеции, а у нее углы при основании равны, а углы, прилежащие к боковой стороне составляют в сумме 180, поэтому углы будут 49°; 180°-49°=131°. ответ 49°; 131°; 131°.
2. Т.к. ОА и ОВ - радиусы, проведенные в точки касания, а СА=СВ по свойству отрезков касательных. проведенных из одной точки, то прямоугольные треугольники АОС и ВОС равны по гипотенузе и катету. (∠А=∠В=90°), значит, ∠АОС=∠ВОС⇒=90°-0.5∠АСО, тогда ∠АОВ=180°-83°=97°
3. Периметр равен 36, значит, сторона 36/4=9, высота ромба равна частному от деления площади на сторону, то есть 54/9=6
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
1. Описать окружность можно только около равнобедренной трапеции, а у нее углы при основании равны, а углы, прилежащие к боковой стороне составляют в сумме 180, поэтому углы будут 49°; 180°-49°=131°. ответ 49°; 131°; 131°.
2. Т.к. ОА и ОВ - радиусы, проведенные в точки касания, а СА=СВ по свойству отрезков касательных. проведенных из одной точки, то прямоугольные треугольники АОС и ВОС равны по гипотенузе и катету. (∠А=∠В=90°), значит, ∠АОС=∠ВОС⇒=90°-0.5∠АСО, тогда ∠АОВ=180°-83°=97°
3. Периметр равен 36, значит, сторона 36/4=9, высота ромба равна частному от деления площади на сторону, то есть 54/9=6
4. tg∠B=АС/ВС=7/2=3.5
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.