Угол BAE равен EAD (AE - биссектриса BAD) BD параллельна AD (прямоугольник является параллелограммом по условию) угол BEA равен EAD (смежные углы при пересечении параллельных прямых общей секущей прямой AE) Следовательно углы BAE и BEA равны и треугольник BAE - равнобедренный, т.е. |AB| = |EB|
По условию, биссектриса делит сторону на отрезки 12 и 7 см. Если |BE| = 7 см, то периметр P = 4*7 + 2*12 = 52 Если |BE| = 12 см, то периметр P = 4*12 + 2*4 = 56
Площадь треугольника можно вычислить как половину произведения двух сторон на синус угла между ними:
S=\frac{1}{2}ab*sin \alphaS=21ab∗sinα
1) а=2 см, b= 3 cм, α=30°
S=\frac{1}{2}*2*3*sin30^o=3*\frac{1}{2}=\frac{3}{2}=1.5S=21∗2∗3∗sin30o=3∗21=23=1.5
ответ: SΔ=1.5 cм².
2) а=2√(2dm), b= 5√(dm), α=45°
S=\frac{1}{2}*2\sqrt{2dm} *5\sqrt{dm} *sin45^o=\sqrt{2}*\sqrt{dm}*\sqrt{dm}*5*\frac{\sqrt{2}}{2}=\frac{5\sqrt{2}\sqrt{2}}{2}dm=5dmS=21∗22dm∗5dm∗sin45o=2∗dm∗dm∗5∗22=2522dm=5dm
ответ: SΔ=5dm кв.ед.
3) а=2 м, b=√3 м, α=90°
S=\frac{1}{2}*2*\sqrt{3}*sin90^o=\sqrt{3}*1=\sqrt{3}S=21∗2∗3∗sin90o=3∗1=3
ответ: SΔ=√3 м².
4) а=0,4 см; b=0,8 см; α=60°
S=\frac{1}{2}*0,4*0,8*sin60^o=0,2*0,8*\frac{\sqrt{3}}{2}=0,1*0,8*\sqrt{3}=0,08\sqrt{3}S=21∗0,4∗0,8∗sin60o=0,2∗0,8∗23=0,1∗0,8∗3=0,083
ответ: SΔ=0,08√3 см²
BD параллельна AD (прямоугольник является параллелограммом по условию)
угол BEA равен EAD (смежные углы при пересечении параллельных прямых общей секущей прямой AE)
Следовательно углы BAE и BEA равны и треугольник BAE - равнобедренный, т.е.
|AB| = |EB|
Периметр параллелограмма равен
P = |AB| + |BC| + |CD| + |DA| = 2 * (|AB| + |BC|) =
= 2 * (|BE| + |BC|) = 2 * (|BE| + |BE| + |EC|) =
= 4 * |BE| + 2 * |EC|
По условию, биссектриса делит сторону на отрезки 12 и 7 см.
Если |BE| = 7 см, то периметр P = 4*7 + 2*12 = 52
Если |BE| = 12 см, то периметр P = 4*12 + 2*4 = 56