Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Пусть К - точка пересечения хорды AC и диаметра BD.
OK=KB=R\2
OA=OB=OC=OD=R=AB=BC
AD=BD=корень((корень(3)*R\2)^2+(3*R\2)^2)=корень(3)*R
AK=BK=корень(3)\2*R
cos (KOA)=(R\2)\R=1\2
угол KOA=угол OBA=угол OBC=60 градусов
угол ФИС=60+60=120 градусов
В выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол ADB=180-120=60 градусов
Угол BAD= углу BCD=180\2=90 градусов
градусные меры дуг AB, BC, CD, AD... соотвественно равны углвой мере углов AOB(=60 градусов), BOC (=60 градусов), COD(180-60=120 градусов)
AOD (=120 градусов)