Прямую 5x-2y=-12 надо представить в виде y=f(x). Т.е. y = 2.5x+6. Чтобы найти координаты, в которых функция пересекает ось Y надо подставить x=0. y = f(0) = 2.5*0+6 = 6. ⇛ Эта прямая пересекает ось ординат (Y) в точке (0;6) Тоже самое с осью абсцисс (X), теперь уже Y приравняем к 0: f(x) = 2.5x+6 = 0 ⇒ x = -2.4 ⇛ Эта прямая пересекает ось абсцисс (X) в точке (-2.4;0)
Ну теперь с точкой A(-2;7), подставляем значение X и Y: y = 2.5x+6 ⇒ 7 = 2.5 * (-2) + 6. Считаем: 2.5 * (-2) + 6 = 1, а 1 ≠ 7. Значит точка A(-2;7) не принадлежит прямой 5x-2y=-12.
Вообще-то эта задача в уме решается. Обязательно разберись с этой темой!
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Т.е. y = 2.5x+6.
Чтобы найти координаты, в которых функция пересекает ось Y надо подставить x=0.
y = f(0) = 2.5*0+6 = 6. ⇛ Эта прямая пересекает ось ординат (Y) в точке (0;6)
Тоже самое с осью абсцисс (X), теперь уже Y приравняем к 0:
f(x) = 2.5x+6 = 0 ⇒ x = -2.4
⇛ Эта прямая пересекает ось абсцисс (X) в точке (-2.4;0)
Ну теперь с точкой A(-2;7), подставляем значение X и Y:
y = 2.5x+6 ⇒ 7 = 2.5 * (-2) + 6.
Считаем:
2.5 * (-2) + 6 = 1, а 1 ≠ 7.
Значит точка A(-2;7) не принадлежит прямой 5x-2y=-12.
Вообще-то эта задача в уме решается. Обязательно разберись с этой темой!