S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:
Тогда для квадрата:
а для правильного пятиугольника:
Т.к. радиус окружности не изменяется, то можем записать:
ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см
2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.
Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:
ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²
3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.
ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.
Площадь равностороннего треугольника выражается через его сторону по формуле:
Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:
Площадь заданной фигуры равна:
ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²
Р=(30+4)*2=68
пусть уменьшенная длина будет 30-у
уменьшенная ширина 4-х
новая площадь должна равняться 120/2
новый периметр 68-22=46
полупериметр 46/2=23
составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2
(30-у)+(4-х)=46/2
(30-у)(4-х)=60
30-у+4-х=23
(30-у)(4-х)=60
х+у=11
(30-у)(4-х)=60 (1)
х=11-у (2)
подставляем наш х в (1)
получаем
(30-у)(4-х(11-у))=60
(30-у)(у-7)=60
30у-210-у²+7у-60=0
-у²+37у-270=0
Д=37²-4(-1)(-270)=1369-1080=289=17²
у1=-27 нам не подходит т.к. сторона не может быть отрицательной
у2=10
подставляем в (2)
х=11-у=11-10=1
ширину надо уменьшить на 10 см, длину на 1 см
1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:
Тогда для квадрата:
а для правильного пятиугольника:
Т.к. радиус окружности не изменяется, то можем записать:
ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см
2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.
Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:
ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²
3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.
ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.
Площадь равностороннего треугольника выражается через его сторону по формуле:
Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:
Площадь заданной фигуры равна:
ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²