Радиус вписанной в прямоугольный треугольник (с катетами a, b и гипотенузой c) окружности равен r=(a+b-c)/2. Следовательно, нам надо найти катеты треугольника, поскольку гипотенуза нам известна. В прямоугольном треугольнике высота, проведенная из вершины прямого угла на гипотенузу, делит ее на отрезки так, что квадрат высоты равен произведению этих отрезков. В нашем случае высота ВН=√(АН*НС)=√(16*9)=12см. Тогда из прямоугольных треугольников АВН и СВН по Пифагору находим катеты АВ=√(ВН²+АН²)=√(144+256)=20см. ВС=√(ВН²+СН²)=√(144+81)=15см. По формуле радиуса вписанной в прямоугольный треугольник окружности имеем: r=(a+b-c)/2, где а,b - катет с - гипотенуза. В нашем случае r=(20+15-25)/2=5см. Тогда площадь вписанной окружности равна S=πR²=25π см² ответ: S=25π см².
Равнобедренный ΔАВС (АВ=ВС=60), Р=192 АС=Р-АВ-ВС=192-60-60=72 Найдем длину медианы ВМ, она же является и биссектрисой и высотой: ВМ=√(АВ²-(ВС/2)²)=√(60²-36²)=48 В точке О пересечения медианы треугольника делятся в отношении два к одному, считая от вершины: ВО/ОМ=2/1 ВО=2ВМ/3=32 ОМ=ВМ/3=16 Каждая биссектриса треугольника делится точкой Е пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины: ВЕ/ЕМ=(АВ+ВС)/АС ВЕ/ЕМ=120/72=5/3 ВЕ=5ВМ/8=30 ЕМ=3ВМ/8=18 Расстояние ОЕ между точками пересечения: ОЕ=ВО-ВЕ=32-30=2 ответ: 2см
Следовательно, нам надо найти катеты треугольника, поскольку гипотенуза нам известна.
В прямоугольном треугольнике высота, проведенная из вершины прямого угла на гипотенузу, делит ее на отрезки так, что квадрат высоты равен произведению этих отрезков.
В нашем случае высота ВН=√(АН*НС)=√(16*9)=12см.
Тогда из прямоугольных треугольников АВН и СВН по Пифагору находим катеты АВ=√(ВН²+АН²)=√(144+256)=20см.
ВС=√(ВН²+СН²)=√(144+81)=15см.
По формуле радиуса вписанной в прямоугольный треугольник окружности имеем:
r=(a+b-c)/2, где а,b - катет с - гипотенуза.
В нашем случае r=(20+15-25)/2=5см.
Тогда площадь вписанной окружности равна S=πR²=25π см²
ответ: S=25π см².
АС=Р-АВ-ВС=192-60-60=72
Найдем длину медианы ВМ, она же является и биссектрисой и высотой:
ВМ=√(АВ²-(ВС/2)²)=√(60²-36²)=48
В точке О пересечения медианы треугольника делятся в отношении два к одному, считая от вершины:
ВО/ОМ=2/1
ВО=2ВМ/3=32
ОМ=ВМ/3=16
Каждая биссектриса треугольника делится точкой Е пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины:
ВЕ/ЕМ=(АВ+ВС)/АС
ВЕ/ЕМ=120/72=5/3
ВЕ=5ВМ/8=30
ЕМ=3ВМ/8=18
Расстояние ОЕ между точками пересечения:
ОЕ=ВО-ВЕ=32-30=2
ответ: 2см