ответ:Если мы соединим точки К и L,a затем точки М и N,то получатся ещё два треугольника LPK и МРN
Рассмотрим их
КР=РМ. LP==PN потому что это стороны треугольников РКN и LPM,которые равны по условию задачи
И так как КМ и LN два перпендикулярных отрезка(тоже по условию),то и углы между двумя сторонами тоже равны и равны по 90 градусов каждый.
Исходя из этого можно утверждать,что треугольники LPK и MPN равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними второго треугольника,то Треугольники равны между собой.Исходя из этого-LK=MN=33,9 cм
Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
ответ:Если мы соединим точки К и L,a затем точки М и N,то получатся ещё два треугольника LPK и МРN
Рассмотрим их
КР=РМ. LP==PN потому что это стороны треугольников РКN и LPM,которые равны по условию задачи
И так как КМ и LN два перпендикулярных отрезка(тоже по условию),то и углы между двумя сторонами тоже равны и равны по 90 градусов каждый.
Исходя из этого можно утверждать,что треугольники LPK и MPN равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними второго треугольника,то Треугольники равны между собой.Исходя из этого-LK=MN=33,9 cм
Объяснение:
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую