Угол между диагоналями основания прямоугольного параллелепипеда равен 45 градусов диагональ параллелепипеда составляет с боковым ребром угол 60 градусов найдите высоту параллелепипеда если его объем равен 9 корней из 6 делить на 4
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Если онлайн переводчик сделал верный перевод, условие такое: Один из углов треугольника равен 50°. Чему равен угол между биссектрисами двух других углов? ------ Сумма углов треугольника 180°. Если один из углов равен 50°, сумма двух других 180°-50°=130°. Биссектрисы делят углы пополам. Поэтому сумма их половин будет 130°:2=65°. При пересечении биссектрисы и основание исходного треугольника образуют треугольник. Сумма двух углов (тех, что являются половинами углов исходного треугольника) равна 65°. Тогда угол между биссектрисами равен 180°-65°=115°.
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.
Один из углов треугольника равен 50°. Чему равен угол между биссектрисами двух других углов?
------
Сумма углов треугольника 180°.
Если один из углов равен 50°, сумма двух других 180°-50°=130°.
Биссектрисы делят углы пополам. Поэтому сумма их половин будет 130°:2=65°.
При пересечении биссектрисы и основание исходного треугольника образуют треугольник. Сумма двух углов (тех, что являются половинами углов исходного треугольника) равна 65°.
Тогда угол между биссектрисами равен 180°-65°=115°.