В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Yshenik2056
Yshenik2056
11.07.2020 14:45 •  Геометрия

Угол между образующей конуса и плоскостью его основания равен α. В конус вписан шар, объем которого равен V. Найдите объем конуса.

Показать ответ
Ответ:
инджи1
инджи1
11.10.2020 04:52

Осевое сечение конуса – равнобедренный треугольник АВС.

АВ=ВС – образующие.

BD– высота конуса, а также высота, медиана и биссектриса равнобедренного треугольника.

О–центр вписанной в треугольник АВС окружности и центр вписанного в конус шара.

ОD=r .

AD=R .

Из прямоугольного треугольника

tg∠OAD = tg(α/2) = r/R . Отсюда r = Rtg(α/2).

ОА– биссектриса угла ВAD, так как центр вписанной в треугольник окружности– точка пересечения биссектрис.

Высота конуса H = R/tg(α/2).

V(шара) = (4/3)πr³ = (4/3)πR³tg³(α/2).

V(конуса)=(1/3)S(осн)·H=(1/3)·πR²·R/tg(α/2) = (1/3)·πR³/tg(α/2).

Разделим V(конуса) на V(шара).

V(конуса) / V(шара) = ( (1/3)·πR³/tg(α/2)) / ((4/3)πR³tg³(α/2)) = 4tg³(α/2)tgα.

ответ: V(конуса) = V(шара) / (4tg³(α/2)tgα).


Угол между образующей конуса и плоскостью его основания равен α. В конус вписан шар, объем которого
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота