Угол между плоскостями альфа и бета, пресекающимся по прямой а, равен 60°. в плоскостях альфа и бета выбраны точки м и к соответственно и из них проведены перпендикуляры мм¹ и кк¹ к прямой а. найдите длину отрезка мк, если кк¹=3, мм¹=8, к¹м¹=√15.
Не помню как правильно оформлять задачи, так что объясню своими словами. Т.к. BD=AC, AO=OC, BO=OD, AB=CD, BC=AD, то ABO и COD - равнобедренные треугольники, которые равны меж собой и BOC И AOD тоже равнобедренные треугольники, которые равны меж собой. Если угол ABO=36 гр., то и угол BAO=36 гр. => угол BOA 108 гр. => COD=108 гр., DCO=36 гр., CDO=36 гр.. Поскольку угол, например, BOA 108 гр, то угол AOD = 72 гр., а т.к. треугольник равнобедренный, то углы OAD и ODA = по 54 гр. И треугольник BOC=AOD. Ну и ответ: угол ADO=54 градуса. Кажись, много лишнего, но вроде бы нужно рисовать рисунок, там это пригодится.
1) Углы при основаниях в равнобедренной трапеции равны ∠В=∠С ∠А=∠Д
Сумма углов по условию равна 86°. Значит каждый угол 43° Пусть углы при нижнем основании обозначены А и Д, оба угла острых, ∠А=∠Д=43°
Сумма углов, прилежащих к боковой стороне равна 180°. ∠А+∠В=180°, значит ∠В=180°-43°=137° ∠В=∠С=137° О т в е т. 43°; 137°; 137°; 43° 2) В прямоугольной трапеции одна боковая сторона перпендикулярна основанию. Пусть ∠А=В=90°
Сумма углов, прилежащих к боковой стороне равна 180°. ∠С+∠Д=180° По условию ∠С-∠Д=32°
Т.к. BD=AC, AO=OC, BO=OD, AB=CD, BC=AD, то ABO и COD - равнобедренные треугольники, которые равны меж собой и BOC И AOD тоже равнобедренные треугольники, которые равны меж собой.
Если угол ABO=36 гр., то и угол BAO=36 гр. => угол BOA 108 гр. => COD=108 гр., DCO=36 гр., CDO=36 гр..
Поскольку угол, например, BOA 108 гр, то угол AOD = 72 гр., а т.к. треугольник равнобедренный, то углы OAD и ODA = по 54 гр. И треугольник BOC=AOD.
Ну и ответ: угол ADO=54 градуса.
Кажись, много лишнего, но вроде бы нужно рисовать рисунок, там это пригодится.
∠В=∠С
∠А=∠Д
Сумма углов по условию равна 86°.
Значит каждый угол 43°
Пусть углы при нижнем основании обозначены А и Д, оба угла острых,
∠А=∠Д=43°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠А+∠В=180°, значит ∠В=180°-43°=137°
∠В=∠С=137°
О т в е т. 43°; 137°; 137°; 43°
2) В прямоугольной трапеции одна боковая сторона перпендикулярна основанию.
Пусть
∠А=В=90°
Сумма углов, прилежащих к боковой стороне равна 180°.
∠С+∠Д=180°
По условию
∠С-∠Д=32°
Система двух уравнений:
{∠С+∠Д=180°
{∠С-∠Д=32°
Складываем
2·∠С=212°
∠С=106°
∠Д= ∠С - 32° = 106° - 32° = 74°
О т в е т. 74° и 106 °