Угол при основании трапеции, вписанной в окружность, равен 42 ͦ. найдите дуги, на которые вершины трапеции делят окружность, если одна из дуг между параллельными прямыми равна 25 ͦ.
Трапеция, вписанная в многоугольник, всегда является равнобокой. Следовательно, углы при основании (А и D) будут равны (по 42 град.) Углы при основании являются вписанными, значит они равны половине дуги, на которую опираются (дуга BCD и дуга ABC). Следовательно, дуги BCD и ABC равны 42*2=84 град. Так как у равнобокой трапеции боковые стороны равны, то они стягиваю одинаковые дуги, т.е. такие дуги, градусные меры которых равны. А по условию задачи одна такая дуга (AB) равна 25 град., следовательно, другая (дуга CD) тоже равна 25 град. Следовательно, дуга ВС равна дуга ВСD - дуга CD = 84 - 25 = 59 град. Теперь мы знаем дуги: AB=CD=25 град., BC = 59 град. Следовательно, последняя дуга АD равна 360 - 25 - 25 - 59 = 251 град. ответ: 25, 25, 59, 251 градус.
Углы при основании являются вписанными, значит они равны половине дуги, на которую опираются (дуга BCD и дуга ABC). Следовательно, дуги BCD и ABC равны 42*2=84 град.
Так как у равнобокой трапеции боковые стороны равны, то они стягиваю одинаковые дуги, т.е. такие дуги, градусные меры которых равны. А по условию задачи одна такая дуга (AB) равна 25 град., следовательно, другая (дуга CD) тоже равна 25 град. Следовательно, дуга ВС равна дуга ВСD - дуга CD = 84 - 25 = 59 град.
Теперь мы знаем дуги: AB=CD=25 град., BC = 59 град. Следовательно, последняя дуга АD равна 360 - 25 - 25 - 59 = 251 град.
ответ: 25, 25, 59, 251 градус.