1)Если диагонали трапеции взаимно перпендикулярны, то ее площадь равна полупроизведению диагоналей.S=56. Можно вывести.ПУстьABCD трапеция, а т.О пересечение диагоналей, тогда S=AO*BD/2+CO*BD/2=BD/2*(AO+OC)=(BD*AC)/2
2)ABCD трапеция. тогда боковые стороны будут по 13 см. А так как в трапецию вписана окружность, сумма оснований =26. S=(AD+BC)*H/2=13*H.Найдем висоту трапеции.Расстояние от точки B до точек касания =4.от т.A до точек касания 9( аналогично от двух других вершин0. получаем BC=8, AD=18.Опусти две высоты и найды по т.Пифагора высоту трапеции,получаем 12 и тогда S=13*12=156
Объяснение:
1. 2, 3
1) ∠PBK и ∠MBL-смежные.
Нет, они вертикальные
2) ∠PBL и ∠MBK-вертикальнвые.
Да, они верикальные, т.к. продолжение сторон одного угла является стороной другого
3) ∠MBK-острый угол.
Да, ∠PBL=∠MBK=72°
72°<90°
4) ∠MBL-прямой угол.
Нет, ∠PBL и ∠MBL-смежные
∠MBL=180°-72°=108°
108°>90°, угол тупой
2. 52°
MA-биссектриса угла, следовательно, она делит угол на две равные части:
∠KMA=∠AML=104°/2=52°
3. ∠DCE=124°
∠DCE и ∠FCE смежные=>∠DCE=180°-56°=124°
4. DC=7см; CF=14см
FD=DC+CF
FD=DC+CF
DC-x
CF-2x
x+2x=21
3x=21
x=7
DC=7 см
CF=14 см
5. ∠NMK=48°
∠KMN=∠OMN-∠OMK=78-30=48°
1)Если диагонали трапеции взаимно перпендикулярны, то ее площадь равна полупроизведению диагоналей.S=56. Можно вывести.ПУстьABCD трапеция, а т.О пересечение диагоналей, тогда S=AO*BD/2+CO*BD/2=BD/2*(AO+OC)=(BD*AC)/2
2)ABCD трапеция. тогда боковые стороны будут по 13 см. А так как в трапецию вписана окружность, сумма оснований =26. S=(AD+BC)*H/2=13*H.Найдем висоту трапеции.Расстояние от точки B до точек касания =4.от т.A до точек касания 9( аналогично от двух других вершин0. получаем BC=8, AD=18.Опусти две высоты и найды по т.Пифагора высоту трапеции,получаем 12 и тогда S=13*12=156