Внутренний диаметр резинового шланга для полива равен 3 см внешние 3,5 см а длина 20 м Сколько литров воды он вмещает? Найдите массу этого шланга если плотность резины 7 г/см³
Объяснение: 1литр=1дм³
1) Геометрической моделью шланга является цилиндр , объём воды будет равен объёму цилиндра с внутренним радиусом r=1,5 см .
V(цилиндра)= π*r²*h .
Тк 1литр=1дм³ , то переведем 1,5см=0,15 дц, 20м=200дц. Тогда
V(цилиндра)= π*0,15²*200≈ 3,14*4,5≈14,13 ( л).
2) Масса шланга m=ρ*V . Найдем объём шланга , как разность между объёмами цилиндров с внутренним и внешним радиусами :
\begin{gathered} 3\cos 2x = 7\cos x \\ 3(2\cos ^{2}x - 1) - 7\cos x = 0 \\ 6\cos ^{2}x - 3 - 7\cos x = 0 \\ \cos x = t \\ 6t^{2}-7t-3=0 \\ D = 49 + 24*3 = 121 \\ \\ t_{1} = \dfrac{7 + 11}{12} = 1.5 \ ; \ \ \ t_{2} = \dfrac{7-11}{12} = -\dfrac{1}{3} \\ \\ $\left[ < br / > \begin{gathered} < br / > \cos x = 1.5 \\ \cos x = -\dfrac{1}{3} \\ < br / > \end{gathered} < br / > \right.$ \ \ \ ; \ < br / > $\left[ < br / > \begin{gathered} < br / > x \notin [-1;1] \\ x = \pm \arccos( -\dfrac{1}{3}) + 2\pi n, n \in Z < br / > \end{gathered} < br / > \right.$ \end{gathered}
Внутренний диаметр резинового шланга для полива равен 3 см внешние 3,5 см а длина 20 м Сколько литров воды он вмещает? Найдите массу этого шланга если плотность резины 7 г/см³
Объяснение: 1литр=1дм³
1) Геометрической моделью шланга является цилиндр , объём воды будет равен объёму цилиндра с внутренним радиусом r=1,5 см .
V(цилиндра)= π*r²*h .
Тк 1литр=1дм³ , то переведем 1,5см=0,15 дц, 20м=200дц. Тогда
V(цилиндра)= π*0,15²*200≈ 3,14*4,5≈14,13 ( л).
2) Масса шланга m=ρ*V . Найдем объём шланга , как разность между объёмами цилиндров с внутренним и внешним радиусами :
V(шланга)=V(внеш)-V(внут)=π*1,75²*h-π*1,5²*h= π*h*(1,75²-1,5²)=
= π*h*(1,75- 1,5)*(1,75+1,5)=π*h*0,25*3,25≈3,14*2000*0,25*3,25≈5102,5 (см³)
m=7*5102,5=35 717,5 (г)≈35,7175(кг)≈36 (кг)