1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
Абсцисса координат точек M(-2;-2) и N(2;10) различные (то есть прямая не проходит вертикально) и поэтому будем искать уравнение прямой в виде с угловым коэффициентом:
y=k·x+b.
Так как прямая проходить через точки M(-2;-2) и N(2;10), то подставим координаты точек в уравнение и получим систему уравнений относительно k и b:
Подставляем найденные решения получим:
y=3·x+4.
Для решения задачи можно использовать общий вид уравнения прямой, проходящей через 2 точки M(x₁; y₁) и N(x₂; y₂):
При заданных значениях координат M(-2;-2) и N(2;10) имеем:
ответ: 1. 10
2. 18
3. Основания 14 и 22. Периметр 64.
Объяснение:
1. Используем теорему о пропорциональных отрезках (если параллельные прямые пересекают стороны угла, то отрезки, образовавшиеся на одной стороне угла, пропорциональны соответствующим отрезкам, образовавшимся на другой стороне).
Составляем пропорцию: 3/6 = 5 /х,откуда х = 5*6 / 3 = 10
2. Рассмотрим треугольник АВС. Отрезок, соединяющий середины его сторон P и M, это средняя линия данного треугольника, она равна половине его основания, т.е. 1/2 диагонали АС. Аналогично для треугольника BCD отрезок MN это средняя линия, и он также равен полочине основания, т.е. диагонали BD.
Рассуждая аналогично для треугольников ACD и ABD находим, периметр MNPQ = 1/2 * АС + 1/2 АС + 1/2 BD + 1/2 BD = AC + BD = 18
У четырехугольника MNPQ противоположные стороны равны и параллельны (По свойству средних линий рассмотренных выше треугольников), значит он является параллелограммом по определению.
3. Рассмотрим ΔABC. ∠BCA =∠ CAD как внутренние накрест лежащие при параллельных прямых, ∠BAC = ∠CAD по условию задачи. Вывод: ∠BAC = ∠BCA, а это углы при основании AC ΔABC. ⇒ Данный треугольник равнобедренный. KM является его средней линией. ⇒ AB = BC = 14.
KL = 7 + 4 + 7 = 18. Поскольку это по условиям задачи среджняя линия трапеции, она равна полусумме оснований трапеции. Находим большее основание:
1/2 AD + 1/2BC = 18
1/2AD + 7 = 18
AD = 22
Периметр трапеции равен 22 + 14 + 14 + 14 = 64
y=3·x+4
Объяснение:
Абсцисса координат точек M(-2;-2) и N(2;10) различные (то есть прямая не проходит вертикально) и поэтому будем искать уравнение прямой в виде с угловым коэффициентом:
y=k·x+b.
Так как прямая проходить через точки M(-2;-2) и N(2;10), то подставим координаты точек в уравнение и получим систему уравнений относительно k и b:
Подставляем найденные решения получим:
y=3·x+4.
Для решения задачи можно использовать общий вид уравнения прямой, проходящей через 2 точки M(x₁; y₁) и N(x₂; y₂):
При заданных значениях координат M(-2;-2) и N(2;10) имеем: