1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°