Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Sаbсd = 54 см².
Объяснение:
Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Объяснение:
гипотенуза с=25см
1 катет а=х
2 катет b=(x+5)
по теореме Пифагора
а²+b²=c²
x²+(x+5)²=25²=625
составим уравнение
x²+(x+5)²-625=0
x²+x²+10x+25-625=0
2x²+10x-600=0
дискриминант
D=b²-4ac=10²-4×2×(-600)=100+4800=4900
корень
x1= -b+√D/2a= -10+√4900/2×2= -10+70/4=60/4=15
x2= -b-√D/2a= -10-√4900/2×2= -10-70/4= -80/4= -20
проверяем
15²+(15+5)²-625=225+20²-625=225+400-625=625-625=0
1 катет а=15 см
2 катет b=20см
площадь прямоугольного треугольника равна половине произведения катетов а и b .
S=1/2 ×a×b=1/2 ×15×20=150 см²