Укажіть формулу, за якою можна обчислити площу трикутника, сторони якого дорівнюють a і b, кут між ними становить , а висота проведена до сторони a, дорівню Укажіть формулу, за якою можна обчислити площу трикутника, сторони якого дорівнюють a і b, кут між ">
2. Внешний угол при вершине R равен сумме двух внутренних, не смежных с ним, значит, внутренний угол М равен 80°-50°=30° По теореме синусов 13/sin30°=х/sin50°;
х=(13*sin50°)*2= 26*sin50°; QRM=180°-80°=100° по свойству смежных углов
1. Верные утверждения про параллелограмм:
a. Противоположные стороны параллелограмма равны
c. Противоположные углы параллелограмма равны
d. Сумма углов параллелограмма равна 360∘
e. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник
h. Точка пересечения диагоналей параллелограмма находится на равных расстояниях от противоположных вершин параллелограмма
2. Верные утверждения про прямоугольник:
a. Углы прямоугольника равны
b. Диагонали прямоугольника равны
c. Биссектриса угла прямоугольника отсекает от него равнобедренный треугольник
f. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его противоположных сторон
g. Точка пересечения диагоналей прямоугольника находится на равных расстояниях от его вершин
h. Квадрат является прямоугольником
3. Верные утверждения про ромб:
c. Биссектриса угла ромба является его диагональю
d. Точка пересечения диагоналей ромба находится на равных расстояниях от всех четырёх его сторон
e. Точка пересечения диагоналей ромба находится на равных расстояниях от его противоположных сторон
g. У всех ромбов одинаковый угол между диагоналями
h. Диагонали разбивают ромб на четыре равных треугольника
i. Квадрат является ромбом
j. Ромб, у которого равны диагонали, является квадратом
4. Верные утверждения про равнобокую трапецию:
a. В равнобокой трапеции есть равные углы
b. Диагонали равнобокой трапеции равны
e. Точка пересечения диагоналей равнобокой трапеции находится на равных расстояниях от её боковых сторон
g. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равны
h. Диагонали разбивают равнобокую трапецию на четыре треугольника, два из которых равнобедренные
1. Используя теорему синусов, получим
8/(sin30°)=x/(sin45°),
8/0,5=х/(1/√2); х=16/√2=8√2
у/sin(180°-30°-45°)=8/0,5; у=16*sin105°=16*соs15°
2. Внешний угол при вершине R равен сумме двух внутренних, не смежных с ним, значит, внутренний угол М равен 80°-50°=30° По теореме синусов 13/sin30°=х/sin50°;
х=(13*sin50°)*2= 26*sin50°; QRM=180°-80°=100° по свойству смежных углов
у/sin100°=13/sin30°; у=2*13sin100°=26*sin100°
3. ∠МКТ=180°-60°-45°=75°
у/sin75°=20/sin60°; у=(20*sin75°)/(√3/2)=
(40√3/3)(0,5*√2/2+√√2*√3/(2*2))10√3(√2+√6)/3
х/=sin45°=20/sin60°; х*√3/2=20*√2/2; х= 20*√6/3