Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
По течению реки :
скорость V по теч. = (х+3) км/ч
расстояние S1= 8 км
время в пути t1= 8/(х+3) ч.
Против течения реки:
V против теч. =(х-3) км/ч
S2= 6 км
t2= 6/(х-3)
t1+t2 = 1 ч. 12 мин . = 1 12/60 ч. = 1,2 ч.
Уравнение.
8/(х+3) + 6/(х-3) = 1,2 |*(x-3)(x+3)
знаменатели не равны 0 :
х+3≠0 ⇒ х≠-3
x-3≠0 ⇒ x≠3
8(x-3) + 6(x+3) =1.2(x-3)(x+3)
8x- 24 + 6x +18 = 1.2(x² -9 )
14x - 6 = 1.2x²- 10.8
1.2x² -10.8 -14x +6=0
1.2x²-14x - 4.8 =0
D= (-14)² - 4*1.2 *(-4.8) = 196 + 23.04= 219.04=14.8²
x1= (14-14.8)/ (2*1.2) = -0.8/2.4 = -1/3 не удовл. условию задачи (скорость не может быть отрицательной величиной)
x2= (14+14.8) / 2.4 = 28.8/2.4= 12 (км/ч) собственная скорость лодки
ответ: 12 км/ч.
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.