1)ПЕРЕСЕЧЕНИЕ ПЛОСКОСТИ ТРЕУГОЛЬНИКА СО СФЕРОЙ ОБРАЗУЕТ ОКРУЖНОСТЬ РАДИУСОМ - ИЗ ТЕОРЕМЫ ПИФАГОРА ИМЕЕМ √(6²-3²)=5 СМ. таким образом имеем окружность радиусом 5 см вписанную в правильный треугольник . в правильном треугольнике высоты являются медианами и биссектрисами . . В точке пересечения делятся в соотношении 1/3 и 2/3 то есть 1/3 =5 см ; 2/3 = 10 см . По теореме пифагора найдем половину длины стороны √10²-5² =√75. Отсюда длина стороны равна 2√75. В ПРАВИЛЬНОМ ТРЕУГОЛЬНИКЕ ВСЕ СТОРОНЫ РАВНЫ !
Найти: углы трапеции
Решение:
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠Р = 180°- ∠М = 180° - 72° = 108°
∠К = 180° - ∠О = 180° - 105° = 75°
2) Дано: ∠ОМК = 38°, ∠РКМ = 48°
Найти: ∠OPK и ∠РОМ
Решение:
∠ОРК = ∠РКМ = 48° как накрест лежащие при пересечении МК║РО секущей РК.
∠РОМ = ∠ОМК = 38° как накрест лежащие при пересечении МК║РО секущей ОМ
3) Дано: ∠ОРК = 72°, а ∠РОМ = 48°
Найти: углы треугольника МКN
Решение:
∠NКМ = ∠ОРК = 72° как накрест лежащие при пересечении МК║РО секущей РК.
∠NМК = ∠РОМ = 48° как накрест лежащие при пересечении МК║РО секущей ОМ
∠МNK = 180° - (72° + 48°) = 180° - 120° = 60°