Если нужны площади всех основных фигур, то вот Вам мой список: Площадь треугольника: 1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне. 2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними. 3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности. 4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности. 5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня 6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма: 1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне 2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба: 1)S = absina - смотри выше. 2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата: S = a^2. a - сторона квадрата
Площадь прямоугольника: S = ab. a,b - стороны прямоугольника
Площадь трапеции: S = (a+b)/2 * h - a,b - основания трапеции. h - высота Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2
Пирамида КАВС - прямоугольная, КА перпендикулярна тр-ку АВС и является высотой пирамиды. Тр-к АВС - прям-ый, <АВС=90°, АС=4 см, <ВАС=30°. В прям-ом тр-ке катет, противолежащий углу 30°, равен половине гипотенузы, т.е. ВС=2 см. АВ найдем по теореме Пифагора АВ^2=AC^2-BC^2=16-4=12 АВ=2√3 Площадь тр-ка равна половине произведения катетов: S=½*AB*BC=½*2√3*2=2√3 см кв. По условию задачи в прям-ом тр-ке КАВ <КВА=60°, значит <АКВ=30°. Получается, что гипотенуза КВ=2*АВ=2*2√3=4√3 см По теореме Пифагора найдем высоту КА KA^2=KB^2-AB^2=48-12=36 КА=6 см Найдем объем пирамиды: V=1/3*S*H V=1/3*2√3*6=4√3 см куб.
Площадь треугольника:
1)S = 1/2 * a * h(a). a - сторона треугольника, h(a) - высота, проведённая к этой стороне.
2)S = 1/2 * a * b * sin a. Здесь a,b - две стороны треугольника, a - угол между ними.
3)S = pr. Здесь p - полупериметр треугольника, r - радиус вписанной в него окружности.
4)S = abc/4R. Здесь a,b,c - стороны треугольника, R - радиус описанной около него окружности.
5)S = sqrt(p(p-a)(p-b)(p-c)) - формула Герона. a,b,c - стороны треугольника, p - его полупериметр, sqrt() - обозначение квадратного корня
6)S = a^2 * sqrt3 / 4 - формула площади правильного треугольника. a - его сторона.
Площадь параллелограмма:
1)S = a * h(a). Здесь a - сторона параллелограмма, h(a) - высота, проведённая к этой стороне
2)S = ab * sin a. a,b - две стороны параллелограмма, a - угол между ними
Площадь ромба:
1)S = absina - смотри выше.
2)S = 1/2 * d1 * d2. Здесь d1,d2 - диагонали ромба
Площадь квадрата:
S = a^2. a - сторона квадрата
Площадь прямоугольника:
S = ab. a,b - стороны прямоугольника
Площадь трапеции:
S = (a+b)/2 * h - a,b - основания трапеции. h - высота
Есть ещё для трапеции формула Герона, но я её здесь не привожу по той простой причине, что она сложна, а применяется очень редко(в моей работе это было всего один раз)
Площадь круга: пиR^2 - без комментариев
Площадь правильного шестиугольника: 3a^2 * sqrt3 / 2
АВ^2=AC^2-BC^2=16-4=12
АВ=2√3
Площадь тр-ка равна половине произведения катетов: S=½*AB*BC=½*2√3*2=2√3 см кв.
По условию задачи в прям-ом тр-ке КАВ <КВА=60°, значит <АКВ=30°. Получается, что гипотенуза КВ=2*АВ=2*2√3=4√3 см
По теореме Пифагора найдем высоту КА
KA^2=KB^2-AB^2=48-12=36
КА=6 см
Найдем объем пирамиды: V=1/3*S*H
V=1/3*2√3*6=4√3 см куб.