В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
1) Из верхнего основания опустим перпендикуляры на нижнее основание - получим 2 равны между собой прямоугольных треугольника (по краям) и прямоугольник - между ними.
2) Так как трапеция равнобедренная, то основания у двух полученных треугольников равны между собой и равны:
(17 - 13) : 2 = 4 : 2 = 2 см.
3) Рассмотрим треугольник. Его основание равно 2 см, а острый угол между боковой стороной и нижним основанием трапеции, согласно условию, равен 60 градусам.
Так как этот треугольник является по построению прямоугольным, то его сторона 2 см является катетом, который лежит против угла 30 градусов:
4) Катет 2 см, лежащий против угла 30 градусов, равен половине гипотенузы. А гипотенуза - это боковая сторона трапеции, которую нам надо найти, чтобы рассчитать периметр.
2 = х /2, где х - гипотенуза (она же - боковая сторона трапеции),
откуда х = 2 * 2 = 4 см (неизвестное делимое равно произведению делителя на частное).
5) Так как трапеция равнобедренная, то её боковые стороны равны между собой.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
38 см
Объяснение:
1) Из верхнего основания опустим перпендикуляры на нижнее основание - получим 2 равны между собой прямоугольных треугольника (по краям) и прямоугольник - между ними.
2) Так как трапеция равнобедренная, то основания у двух полученных треугольников равны между собой и равны:
(17 - 13) : 2 = 4 : 2 = 2 см.
3) Рассмотрим треугольник. Его основание равно 2 см, а острый угол между боковой стороной и нижним основанием трапеции, согласно условию, равен 60 градусам.
Так как этот треугольник является по построению прямоугольным, то его сторона 2 см является катетом, который лежит против угла 30 градусов:
180 градусов (сумма внутренних углов треугольника) - 90 градусов (прямой угол) - 60 градусов (известный угол) = 30 градусов.
4) Катет 2 см, лежащий против угла 30 градусов, равен половине гипотенузы. А гипотенуза - это боковая сторона трапеции, которую нам надо найти, чтобы рассчитать периметр.
2 = х /2, где х - гипотенуза (она же - боковая сторона трапеции),
откуда х = 2 * 2 = 4 см (неизвестное делимое равно произведению делителя на частное).
5) Так как трапеция равнобедренная, то её боковые стороны равны между собой.
Находим периметр трапеции: 17 + 4 + 13 + 4 = 38 см
ответ: периметр данной трапеции равен 38 см.