По условию О₂ - центр вневписанной окружности, т.е. О₂ лежит на пересечении биссектрис внешних углов треугольника ABC при углах B и С. Т.к. BO₁ и BO₂ - биссектрисы углов, сумма которых равна 180°, то ∠O₁BO₂=90°. Аналогично, ∠O₁СO₂=90°. Значит O₁BO₂C вписан в окружность c диаметром O₁O₂. Значит, по т. синусов для треугольника BO₁С получаем O₁O₂=BC/sin(BO₁C). Дальше, т.к. O₁ лежит на пересечении биссектрис углов ∠ABC и ∠AСB, то ∠BAC=2∠BO₁C-180°, и значит sin(∠BAC)=-sin(2∠BO₁C), т.е. по т. синусов для треугольника АBC получаем BC=-2Rsin(2∠BO₁C), где R - радиус окружности описанной около АBC. Итак, O₁O₂=-2Rsin(2∠BO₁C)/sin(BO₁C)=-4Rcos(BO₁C)=4·6√(1-5/9)=16.
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
O₁O₂=-2Rsin(2∠BO₁C)/sin(BO₁C)=-4Rcos(BO₁C)=4·6√(1-5/9)=16.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg