Укажіть рiвняння, яке є рiвнянням кола, якщо відомо, що AB - діаметр кола i A(7,5;3), B(-6,5; -1). A (x+1)²+(y+1)² =100 B (x+0,5)² +(y+1)² = 53 Б (x-1)²+(y-1)²=100 T(x−0,5)+(v-1) = 53
1. 1) Угол при вершине равен 180-2×75=180-150=30 2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем: х²=(½х)²+2² х²-¼х²=4 ¾х²=4 х²=4×4/3 х=4/кореньиз3 Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3. 3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²) 2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144 24а=144 а=6 Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260 3. S=a×h 12×На=36 На=3 (см) 9×Нb=36 Нb=4
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.
2) Проведём из угла при основании высоту к боковой стороне. По свойству равнобедренного треугольника она будет и медианой. Рассмотрим полученный прямоугольный треугольник. По свойству прямоугольного треугольника, катет, лежащий против угла в 30 градусов равен половине гипотенузы. По теореме Пифагора имеем:
х²=(½х)²+2²
х²-¼х²=4
¾х²=4
х²=4×4/3
х=4/кореньиз3
Боковая сторона равна 4/кореньиз3, а высота к ней 2/кореньиз3.
3) Площадь треугольника S=½a×h=½×2/кореньиз3 × 4/кореньиз3 =½×8/3=4/3 (см²)
2. Пусть одна часть будет а, тогда одна сторона будет 5а, другая 7а. Р=2×(5а+7а)=144. 2×12а=144
24а=144
а=6
Тогда одна сторона равна 6×5=30, а другая 6×7=42. Тогда S=30×42=1260
3. S=a×h
12×На=36
На=3 (см)
9×Нb=36
Нb=4
Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.