У равнобедренного Δ две стороны равны. 234 - 104 = 130 - это сумма двух равных сторон 130 : 2 = 65 - это одна из равных сторон. Из вершины Δ, противолежащей основанию, опустим высоту на основание Получим 2 равных прямоугольных треугольника. Рассмотрим один из них. Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам 104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ. Гипотенуза = боковой стороне = 65 По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.) ответ: 2028 кв.ед - площадь равнобедренного Δ.
Пускай у нас есть произвольный треугольник с вершинами КМН. Через вершину М проведем прямую параллельно прямой КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана. - Читайте подробнее на FB.ru: http://fb.ru/article/150393/summa-uglov-treugolnika-teorema-o-summe-uglov-treugolnika
234 - 104 = 130 - это сумма двух равных сторон
130 : 2 = 65 - это одна из равных сторон.
Из вершины Δ, противолежащей основанию, опустим высоту на основание
Получим 2 равных прямоугольных треугольника. Рассмотрим один из них.
Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам
104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ.
Гипотенуза = боковой стороне = 65
По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ
Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ
S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.)
ответ: 2028 кв.ед - площадь равнобедренного Δ.