Укажите фигуру, все точки которой и только они обладат следующими свойствами (чертежи):
1) принадлежать одновременно двум данным пересекающимся прямым;
2) принадлежать сторонам данного угла и находиться на расстоянии 1 см от его вершины;
3) принадлежать данному отрезку и быть равноуделёнными от его концов;
4) одновременно принадлежать двум сторонам данного треугольника.
1. BC=6
трегольник NAD подобен ВАС(т.к. угол А общий, и там ещё равны углы по 90 градусов и это первый признак подобия)
и соудуя из этого АС/АD=10/5=2
и так как ND подобна СВ а коэффициент подобия 2, то 3×2=6
2. ответ 4
ну те же самые треугольники подобные и точно по таким же признакам.
АN подобно АВ и коэффициент подобия это 1/2 (ND/CB=3/6)
1/2×8=4
3.ответ 10
все то же самое что и в предыдущих двух.
надо сложить стороны АD +DB=5+3=8
AB/AN=2
AC=2×AD=10
4. ну сдесь по аналогии, не плохо было бы и самому разобраться, ответ 3
Это задачи на подобие треугольников.
№1
АВ║ДЕ; ВД и АЕ - секущие
∠В=∠Д и ∠А=∠Е как накрест лежащие ⇒
Δ АВС и Δ ВСЕ подобны по 2-м углам.
АС/СЕ=ВС/СД
12/СЕ=10/5
СЕ=12*5/10=12/2=6 единиц - это ответ.
№2 (если ΔАВС прямоугольный)
ΔАСВ; ∠В=α; ∠А=90-α
Пусть высота СД
ΔАСД; ∠А=90-α; ∠АСД=90-(90-α)=α
⇒ ΔАСД и ΔСДВ подобны по острому углу α.
АД/АС=СД/СВ
АД/8=4/12
АД/8=1/3
АД=8/3=2 2/3 - это ответ. Проверка показывает, что или АСВ - не прямоугольный треугольник или числа не те.
По т.Пифагора АД=√(64-16)=√48=√16*3=4√3 - это ответ.