Укажите, какие из свойств квадрата являются свойствами прямоугольника, какие - ромба, а какие - параллелограмма? Все углы квадрата прямые.
Диагонали квадрата равны.
Диагонали квадрата взаимно перпендикулярны.
Диагонали квадрата точкой пересечения делятся пополам.
Диагонали делят углы квадрата пополам.
a² = b² + c² - 2*b*c*cos(α)
одна диагональ основания будет (d1)² = 14² + (3√2)² - 2*14*3√2*cos(135)
(d1)² = 196+18 + 84*√2*√2 / 2 = 298
другая диагональ основания будет (d2)² = 14² + (3√2)² - 2*14*3√2*cos(180-135)
(d2)² = 196+18 - 84*√2*√2 / 2 = 130
и теперь по т.Пифагора
одна диагональ параллелепипеда (D1)² = (d1)² + 12² = 298+144 = 442
D1 = √442
другая (D2)² = (d2)² + 12² = 130+144 = 274
D2 = √274
Прямоугольные треугольники ADM и ADE подобны, то есть AM/AB = AB/AE; или
AM*AE = AB^2;
Ясно, что AM = AC/2; Для AE возможны два варианта
1) точка E лежит ВНУТРИ ромба. В этом случае угол A ромба острый.
AE = AC - CE;
Получается уравнение (AC/2)*(AC - 12) = 8^2*5; AC^2 - 12*AC - 640 = 0 ;
или AC = 32; отсюда AM = 16; BM^2 = (8^2*5 - 16^2) = 8^2; BD = 2*BM = 16; это меньшая диагональ.
2) точка E лежит ВНЕ ромба. В этом случае угол A ромба тупой.
AE = AC + CE;
Получается уравнение (AC/2)*(AC + 12) = 8^2*5; AC^2 + 12*AC - 640 = 0;
или AC = 20; это меньшая диагональ.
В задаче есть 2 варианта решения - в зависимости от того, где лежит точка E (или - какой угол A - острый или тупой).