Укажите, какие из утверждений являются истинными. Выберите все возможные варинаты ответов. 1. Равнобедренная трапеция имеет ось симметрии.
2. Существует параллельный перенос, при котором прямая отображается на себя.
3. Прямая имеет бесконечно много центров симметрии.
4. Прямая, содержащая медиану равнобедренного треугольника, является его осью симметрии.
Находим площадь основания призмы.
V = SoH, отсюда находим So = V/H = 672/8 = 84 кв.ед.
Примем ВС = х, а АД = 6х.
Проекция АВ на АД равна (6х - х)/2 = 2,5х.
Используем формулу площади трапеции.
So = ((6x + x)/2)*H, или 84 = 3,5х*6х = 21х².
Отсюда находим неизвестную х = √(84/21) = √4 = 2.
Теперь находим АВ = √((2,5х)² + (6х)²) = √(42,25х²) = 6,5х.
Длина АВ = 6,5*2 = 13.
Переходим к заданному сечению.
Это прямоугольник, основание равно АВ как параллельная секущая при параллельных прямых, высота равна высоте призмы.
ответ: Sсеч = 13*8 = 104 кв.ед.
20 Иное решение
Объяснение:
Пусть треугольник АВС ( АВ=ВС=х ) . Точка на стороне АС - Р.
АР=21 РС=11 ВР=13
Рассмотрим треугольник АВР и выразим по т косинусов сторону АВ=х, угол ∡АРВ =α
х²=21²+13²-2*21*13*cosα
х²=610-546*cosα (1)
Теперь выразим из треугольника ВСР сторону ВС=х
угол ∡ВРС=180°-∡АРВ=180°-α => cos (180°-α)= -cosα
х²=11²+13²-2*11*13*(-cosα)
х²=290+286*cosα (2 )
Вычтем из (1) (2)
=> 610-546*cosα -290-286*cosα=0
320-832*cosα=0
cosα=5/13
Подставим cosα=5/13 в уравнение (1)
х²=610-546*5/13
x²=400
x=20