Укажите, какие из утверждений являются истинными. Выберите все возможные варинаты ответов. 1. Равнобедренная трапеция имеет ось симметрии.
2. Существует параллельный перенос, при котором прямая отображается на себя.
3. Прямая имеет бесконечно много центров симметрии.
4. Прямая, содержащая медиану равнобедренного треугольника, является его осью симметрии.
Объяснение:
Задача 1
1. Провести прямую.
2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку ВС , и отметить другой конец отрезка B .
3. Провести окружность с центром A и радиусом, равным отрезку АВ .
4. Провести окружность с центром B и радиусом, равным отрезку АС .
5. Точка пересечения окружностей является третьей вершиной искомого треугольника.
Задача 2
1. Провести прямую.
2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку MP .
3. Построить угол, равный данному ∡ M (вершина угла A , одна сторона угла лежит на прямой).
4. На другой стороне угла отложить отрезок, равный данному отрезку MK .
5. Соединить концы отрезков.
Дано:
OP=8
Угол OSP=45 градусов
Угол SPK=90 градусов
Угол POS=90 градусов
Сумма углов треугольника 180 градусов, чтобы найти угол OPS нужно из 180 вычесть сумму других (2) углов, 180-(90+45)=45 градусов - угол OPS
Угол OPS = углу OSP следовательно треугольник OPS равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=OS=8
Угол POS и угол POK - смежные, суммы смежных углов равна 180 градусов, 180-90=90 градусов - угол POK
Угол OPS входит в состав угла KPS, а значит 90-45=45 - угол OPK, сумма углов треугольника рана 180 градусов, 180-(90+45)=45 - угол PKO, углы при основание равны значит треугольник равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=KO=8, KS состоит из KO и OS следовательно 8+8=16 - KS
ответ: OS=8, KS=16
Всё расписала, чтобы было понятно что и откуда взялось)