построим окружность произвольного радиуса с центром в точке М; точки пересечения этой окружности со сторонами угла М обозначим N и Т;
построим окружность с тем же радиусом с центром в точке А; Е - точка пересечения этой окружности с отрезком АВ;проведем дугу с центром в точке Е и радиусом, равным NT; F - точка пересечения дуги с окружностью;проведем луч AF.
3. На луче AF дважды последовательно отложим отрезок, равный МК, получим точку С.
4. Соединим точки В и С.
ΔАВС - искомый.
Задача может не иметь решения, если в данном треугольнике сторона МК большая и не выполняется неравенство:
1) Треугольники АОD и ВОС подобны (по 1 признаку, тк углы между диагональю и основанием равны как накрест лежащие при пересечении параллельных секущей), значит отношение их площадей равно квадрату коэффициента подобия: . Отсюда S=45/9=5 2) По теореме средняя линия треугольника равна половине стороны, значит: 4х+4х+8х=45, 16х=45, х=45/16. Вычислим стороны: 4·45/16=11,25; 4·45/16=11,25; 8·45/16=22,5. ответ: 11,25; 11,25; 22,16 3)Треугольники АВС и ВЕF подобны, значит их сходственные стороны пропорциональны, те АС/ЕF=3/2 (медианы в точке пересечения делятся в отношении 2:1). ЕF=15·2/3=10 6) ВС-средняя линия треугольника АКD, значит равна половине АD, те =6, значит ВС+AD=12+6=18
1. На прямой m отложим отрезок АВ = МР.
2. Построим ∠А = ∠М. Для этого:
построим окружность произвольного радиуса с центром в точке М; точки пересечения этой окружности со сторонами угла М обозначим N и Т;
построим окружность с тем же радиусом с центром в точке А; Е - точка пересечения этой окружности с отрезком АВ;проведем дугу с центром в точке Е и радиусом, равным NT; F - точка пересечения дуги с окружностью;проведем луч AF.3. На луче AF дважды последовательно отложим отрезок, равный МК, получим точку С.
4. Соединим точки В и С.
ΔАВС - искомый.
Задача может не иметь решения, если в данном треугольнике сторона МК большая и не выполняется неравенство:
2MK < MP + KP.
2) По теореме средняя линия треугольника равна половине стороны, значит: 4х+4х+8х=45, 16х=45, х=45/16. Вычислим стороны: 4·45/16=11,25; 4·45/16=11,25; 8·45/16=22,5. ответ: 11,25; 11,25; 22,16
3)Треугольники АВС и ВЕF подобны, значит их сходственные стороны пропорциональны, те АС/ЕF=3/2 (медианы в точке пересечения делятся в отношении 2:1). ЕF=15·2/3=10
6) ВС-средняя линия треугольника АКD, значит равна половине АD, те =6, значит ВС+AD=12+6=18