А задаче есть избыточные данные. то, что перпендикуляр к короткой стороне равен 8 см, позволяет найти нам длинную сторону, хотя её не спрашивают в задаче. А спрашивают расстояние от точки четверти диагонали к длинной стороне. Дополним параллелограмм синими линями, чтобы под большой диагональю образовался треугольник. в нём высота h может быть найдена из известной короткой стороны и угла между короткой и длинной сторонами h = 16*sin(30) = 8 см Прямоугольные треугольники, образованные нижней стороной параллелограмма, его длинной диагональю и синей высотой h и красным расстоянием z подобны. Коэффициент подобия 1/4, т.к. по условию полная диагональ - это 4 части (3+1) и короткий отрезок - одна часть Получается, что z = 1/4 h = 8/4 = 2 см
Сторона MP^2 равна по теореме пифагора: (Mx-Px)^2+(Му-Ру)^2= (-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем 169=117+52 => 169=169 так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный
Дополним параллелограмм синими линями, чтобы под большой диагональю образовался треугольник.
в нём высота h может быть найдена из известной короткой стороны и угла между короткой и длинной сторонами
h = 16*sin(30) = 8 см
Прямоугольные треугольники, образованные нижней стороной параллелограмма, его длинной диагональю и синей высотой h и красным расстоянием z подобны.
Коэффициент подобия 1/4, т.к. по условию полная диагональ - это 4 части (3+1) и короткий отрезок - одна часть
Получается, что
z = 1/4 h = 8/4 = 2 см
(-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов.
Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем
169=117+52 => 169=169
так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный