Улісосмузі ростуть 18 дубів. на всіх них порівну жолудів. подув вітер, і з деяких дубів посипалися жолуді: з деяких – рівно половина, з деяких – рівно третина, а з решти – жодного жолудя. при цьому з усіх дубів разом упала рівно частина всіх жолудів. із скількох дубів жолуді не падали?
қиық пирамида көлемі
V=7√3 /36 см³
а2=2см
а1=1 см
α=30°
V- ?
қиық пирамида төменгі табанындағы дұрыс үшбұрыштың сырттай сызылған шеңбердің радиусы
Rт=a2/√3=2/√3 см
жоғарғы
Rж=а1/√3=1/√3 см
пирамида қиылмаған жағдайдағы биіктігі (пирамида төбесінен төмендегі табанға дейінгі )
Hтөм= tgα×Rт=tg30° ×2/√3=√3/3 × 2/√3=2/3 см
жоғарғы табан биіктігі
Hжоғ=tgα×Rж=tg30°×1/√3 =√3/3 × 1/√3=1/3 см
қиылған пирамида биіктігі
Hқ=Нтөм- Нжоғ=2/3 - 1/3 = (2 - 1)/3=1/3 см
жоғарғы табан ауданы ( дұрыс тең қабырғалы үшбұрыштың ауданы формуласымен )
S1=a²√3 /4= 1² ×√3 /4= √3 /4 см²
төменгі табан ауданы
S2=а²√3 /4=2²×√3 /4= 4×√3 /4=√3 см²
қиық пирамида көлемі
V=1/3 × H×(S1+√S1×S2 + S2)
V=1/3 × 1/3×(√3/4 + √(√3/4 × √3) + √3 )=
=1/9×(√3 /4 +√3 /2 + √3)=1/9×( (√3 +2√3 + 4√3)/4 )=
=1/9 × 7√3/ 4=7√3 /36 см³
Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).
8.2.
Построим точки A1 и B1 на сторонах BC и AC соответственно так, что BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 : 2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.
8.3.
Пусть O — центр данной окружности, AB — хорда, проходящая через точку P, M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.
8.4.
Пусть R — радиус данной окружности, O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.
8.5.
Пусть R — радиус окружности S, O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса
Ц
R2 – d2/4
с центром O.
8.6.
Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,
SR
EC
= PQ
EC
= BQ
BC
= FR
FC
, т. е. точка S