Ну тогда так: Раз площадь квадрата равна 36, тогда сторона квадрата равна 6 см.Диагонали квадрата пересекаются в центре квадрата. Опустим перпендикуляр из одной стороны каадрата на противоположную сторону так, чтобы он через точку пересечения диагоналей. Получилась фигура-прямоугольник так как все углы прямые. У прямоугольника противоположные стороны равны. А точка пересечения диагоналей делит сторону нашего прямоугольника пополам. Так как сторона равна 6 см, то перпендикуляр ( отрезок соединяющий точку пересечения диагоналей со стороной квадрата) будет равен половине стороны квадрата . 6:2=3 см Значит расстояние от точки пересечения диагоналей до построения( то есть самого квадрата) будет равно 3 си
Раз площадь квадрата равна 36, тогда сторона квадрата равна 6 см.Диагонали квадрата пересекаются в центре квадрата. Опустим перпендикуляр из одной стороны каадрата на противоположную сторону так, чтобы он через точку пересечения диагоналей. Получилась фигура-прямоугольник так как все углы прямые. У прямоугольника противоположные стороны равны. А точка пересечения диагоналей делит сторону нашего прямоугольника пополам. Так как сторона равна 6 см, то перпендикуляр ( отрезок соединяющий точку пересечения диагоналей со стороной квадрата) будет равен половине стороны квадрата .
6:2=3 см
Значит расстояние от точки пересечения диагоналей до построения( то есть самого квадрата) будет равно 3 си
Объяснение:
Задача №1.
Давайте примем отрезок BK за x. Тогда отрезок AK будет равен x + 4 cм (потому что AK больше BK на 4 см).
Составляем уравнение:
x + x + 4 = 36
2x = 36 -4
2x = 32
x = 16 см - отрезок BK (потому что BK мы приняли за x).
Теперь можем найти отрезок AK. Из условия задачи известно, что AK больше BK на 4 см.
Следовательно:
AK = BK + 4 cм = 16 см + 4 см = 20 см.
Задача решена.
Задача №2.
Углы ABC и DBC являются смежными, потому что лежат на одной прямой, а две другие прямые являются дополнительными полупрямыми этих углов.
Имеем:
1) ∠ABC + ∠DBC = 180° (по свойству смежных углов)
Чтобы найти эти углы, надо составить уравнение, которое решало бы эту задачу.
Пусть x - это ∠DBC, тогда ∠ABC будет равен x + 38° (угол ABC больше ABD на 38°).
Имеем:
x + x + 38° = 180°
2x = 142
x = 71° - ∠DBC (так как угол DBC мы взяли за x).
Теперь найдем угол ABC:
2) ∠ABC = 71° + 38° = 109°
Так как эти углы делит пополам биссектриса, то углы, образованные при пересечении биссектрисы будут равны.
Чтобы их найти, мы 109 разделим на 2.
3) ∠ADB = 109° : 2 = 54,5°
Задача решена.
Задача №3.
Когда биссектриса делит угол пополам, образовываются другие углы, градусная мера которых будет в два раза меньше.
1) 150° : 2 = 75° - углы, образованные при пересечении луча b.
2) 75 + 40 = 115°