Вписанные углы СВЕ=ЕАС ( опираются на одну дугу - свойство вписанного угла)
Вписанные углы АВЕ=ЕСА ( опираются на одну дугу - свойство вписанного угла)
Но ∠ЕАС=∠ ЕСА, => ∠АВЕ=∠СВЕ, поэтому диагональ ВЕ - биссектриса угла АВС.
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. Пусть К - точка пересечения биссектрисой диагонали АС. Тогда АК:КС=АВ:ВС=5:2
В данном случае нам очень знание всех формул на площадь. А именно через синус. Формула имеет вид
Где ab - угол между смежными сторонами и a и b длина этих сторон.
Зная синус угла между сторонами, мы найдем угол между сторонами по арксинусу.
Выразим синус
Подставим значения и получим 0.5
Если это была бы тригонометрия, то угол равнялся
Где n - целое число.
Но в геометрии углы не могут быть отрицательными или больше 180°. Поэтому рассмотрим 2 варианта: 30° и 150°. Надо думать логически: напротив угла стоит сторона либо самая большая, либо самая маленькая (не факт, но наверняка). Рассмотрим случай с большей стороной.
Эта сторона будет больше 8; 9, например (на самом деле больше, но я просто привел пример). Как мы знаем, площадь треугольника равна полупроизведению основания и высоты. Тогда их произведение равно 12. Если наша сторона равна 8, то высота будет равна максимум 1.5. На самом деле, сторона это равна около 11. Попробуем проверить с формулы Герона. Не проходит, тогда правильный ответ 30°.
(Я вырезал часть решения с нахождением третьей стороны по теореме косинусов и подставлению в формулу Герона, но я посчитал, что сделал неправильно, поэтому оставил часть решения на вас, так как мое неоптимально)
ответ: АС точкой пересечения диагоналей делится на АК=15 (см)
и КС=2•3=6 (см)
Объяснение:
Треугольник АЕС - равнобедренный ( дано), => угол ЕАС=углу ЕСА. .
Вписанные углы СВЕ=ЕАС ( опираются на одну дугу - свойство вписанного угла)
Вписанные углы АВЕ=ЕСА ( опираются на одну дугу - свойство вписанного угла)
Но ∠ЕАС=∠ ЕСА, => ∠АВЕ=∠СВЕ, поэтому диагональ ВЕ - биссектриса угла АВС.
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. Пусть К - точка пересечения биссектрисой диагонали АС. Тогда АК:КС=АВ:ВС=5:2
АС=21=АК+КС
АС=5+2=7 частей
21:7=3 – длина одной части.
АК=5•3=15 (см)
КС=2•3=6 (см)
30°
Объяснение:
В данном случае нам очень знание всех формул на площадь. А именно через синус. Формула имеет вид
Где ab - угол между смежными сторонами и a и b длина этих сторон.
Зная синус угла между сторонами, мы найдем угол между сторонами по арксинусу.
Выразим синус
Подставим значения и получим 0.5
Если это была бы тригонометрия, то угол равнялся
Где n - целое число.
Но в геометрии углы не могут быть отрицательными или больше 180°. Поэтому рассмотрим 2 варианта: 30° и 150°. Надо думать логически: напротив угла стоит сторона либо самая большая, либо самая маленькая (не факт, но наверняка). Рассмотрим случай с большей стороной.
Эта сторона будет больше 8; 9, например (на самом деле больше, но я просто привел пример). Как мы знаем, площадь треугольника равна полупроизведению основания и высоты. Тогда их произведение равно 12. Если наша сторона равна 8, то высота будет равна максимум 1.5. На самом деле, сторона это равна около 11. Попробуем проверить с формулы Герона. Не проходит, тогда правильный ответ 30°.
(Я вырезал часть решения с нахождением третьей стороны по теореме косинусов и подставлению в формулу Герона, но я посчитал, что сделал неправильно, поэтому оставил часть решения на вас, так как мое неоптимально)