УМОЛЯЮ Дан равнобедренный треугольник. Найдите отношение радиусов вписанной и описанной окружностей, если : угол при вершине равен 2) Дан выпуклый четырехугольник. Отрезки, соединяющие середины противоположных сторон, равны и и пересекаются под углом 60 градусов 3) Докажите что углы треугольника ABC связаны соотношением: sin² ∠A+sin²∠B-sin²∠C=2sin∠Asin∠Bcos∠C. 4) Дан прямоугольник ABCD. Докажите, что для любой точки O выполняется равенство: вектор OA · вектор OC = вектор OB · вектор OD. 5) Даны произвольные точки A, B, C и D. Докажите равенство: вектор AB · вектор OC + вектор AD · вектор BC - вектор AC · вектор BD = 0.
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение:
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)