умоляю осталось 15 минут чтобы решить задачу решить эту задачу Напишите данные доказательства и так далее 16 упражнение не берите из интернета из одной точки проведены две касательные к окружности Докажите что отрезки касательных МР и МQ равны
Также, в равнобедренном треугольнике биссектриса является и медианой и высотой.
Объяснение:
Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Стороны данного треугольника равны 15 см, 20 см, 30 см. Найдите стороны треугольника с периметром 26 см, подобного данному треугольнику. Покажите, что отношение площадей треугольников ABC и A1B1C1 равно (3)
Объяснение:
Т.к. стороны ΔАВС равны 15 см, 20 см, 30 см , то отношение этих сторон 3:4:6. Такое же отношение сторон будет и в подобном ΔА₁В₁С₁.
Пусть одна часть сторон ΔА₁В₁С₁ будет х , тогда длина сторон будет равна 3х, 4х,6х.
Дано:
∆ABC-равнобедренный
АС-8 см
BD-биссектриса угла АВС
Найти: AD-?
1) Т.к. ∆ABC равнобедренный, это значит, что углы при основании равны(угол АВС=ВСА)
2) ВD-биссектриса, из этого следует, что угол АВD=DBC(биссектриса делит углы по полам)
3) BD- общая сторона, углы ABD=DBC, ABC=BCA, следовательно, треугольник ABD=BCD(по 2 признаку равенства треугольников)
4) AD=DC(т.к треугольники равны), следовательно, BD-медиана.
5) AD=8:2=4(т.к. медиана делит стороны по полам)
ответ: 4
Также, в равнобедренном треугольнике биссектриса является и медианой и высотой.
Объяснение:
Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Стороны данного треугольника равны 15 см, 20 см, 30 см. Найдите стороны треугольника с периметром 26 см, подобного данному треугольнику. Покажите, что отношение площадей треугольников ABC и A1B1C1 равно (3)
Объяснение:
Т.к. стороны ΔАВС равны 15 см, 20 см, 30 см , то отношение этих сторон 3:4:6. Такое же отношение сторон будет и в подобном ΔА₁В₁С₁.
Пусть одна часть сторон ΔА₁В₁С₁ будет х , тогда длина сторон будет равна 3х, 4х,6х.
Т.к. Р(А₁В₁С₁) =26 см , то 3х+ 4х +6х =26 , х=2.
Тогда стороны ΔА₁В₁С₁ такие 6 см ,8 см ,12 см.
Найдем коэффициент подобия к= .
По т. об отношении площадей ,получаем
.
А 3 не получается.