В равнобедренном треугольнике АВС <C=<A. <DAC=(1/2)*<A, так как AD - биссектриса. Значит <DAC=(1/2)*<C. В треугольнике ADC <ADB - внешний и равен сумме двух внутренних углов, не смежных с ним, то есть <ADB=<DAC+<C или 1,5*<C=110°. Тогда <C=110°:1,5=73и1/3°=<A, a <B=180°-146и2/3°=33и1/3° (так как сумма внутренних углов треугольника равна 180°). ответ: <A=<C=73и1/3°, <C=33и1/3°.
P.S. Стоило в условии задачи дать <ADB=111° и мы получили бы ответ: <A=<C=74°,a <B=32° !
так как AD - биссектриса. Значит <DAC=(1/2)*<C. В треугольнике ADC <ADB - внешний и равен сумме двух внутренних углов, не смежных с ним, то есть <ADB=<DAC+<C или 1,5*<C=110°.
Тогда <C=110°:1,5=73и1/3°=<A, a <B=180°-146и2/3°=33и1/3° (так как сумма внутренних углов треугольника равна 180°).
ответ: <A=<C=73и1/3°, <C=33и1/3°.
P.S. Стоило в условии задачи дать <ADB=111° и мы получили бы ответ:
<A=<C=74°,a <B=32° !
1. /АВС - вписанный(60°)
2. /АОС - центральный(80°)
3. /АВС - вписанный(90°)
4. /АDС - вписанный(160°)
5. /АВС - вписанный(125°)
6. /АОВ - центральный(160°)
7. /ADC - вписанный(30°)
8. /АВD - вписанный(90°), /СВD - вписанный(120°)
9. /DAC - вписанный(55°)
Объяснение:
Центральный угол равен дуге, на которую он опирается.
Вписанный угол равен половине дуги, на которую он опирается.
Вертикальные углы равны.
Сумма углов треугольника - 180°.
Градусная мера окружности - 360°.
Вписанный угол в 2 раза меньше центрального угла.