1. Проводим луч b с началом в точке А перпендикулярно прямой ВС. b∩BC = H. На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH. Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности. Для прямоугольного треугольника справедлива формула: r = p - c, где р - его полупериметр. p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу. Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х. 2x - x = 50 x = 50 ∠АСВ = 50° ∠АОВ = 100°
Площадь трапеции равна Sabcd=(BC+AD)/2*H=(BC+2BC)/2*H=3/2*BC*H=90. Треугольники ВКС и АКD подобны по трём углам. Коэффициент подобия ВС/AD=1/2. То есть отношение высот этих треугольников=1/2. Тогда отношение высоты треугольника ВКС к высоте трапеции АВСD равно h/H=1/3. Площадь треугольника ВКС равна Sbkc=1/2*BC*h=1/2*BC*(1/3*H)=(3/2*BC*H)*1/3*1/3=90*1/9=10. Здесь умножили и разделили на 3 чтобы выделить площадь трапеции. Далее-треугольники BLM и АКД подобны по трём углам. Коэффициент подобия ВМ/AD=1/4. Тогда отношение высоты треугольника BLM к высоте трапеции =1/5. Площадь BLM=1/2*BM*h=1/2*(1/2BC)*(1/5*H)=(3/2*BC*H)*1/10*1/3=90*1/30=3. Аналогично находим площадь треугольника MNC=3. Из подобия треугольников MNC и AND. Тогда SkLMN=SBKC-SBLM-SMNC=10-3-3=4.
1. Проводим луч b с началом в точке А перпендикулярно прямой ВС.
b∩BC = H.
На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH.
Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности.
Для прямоугольного треугольника справедлива формула:
r = p - c, где р - его полупериметр.
p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу.
Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х.
2x - x = 50
x = 50
∠АСВ = 50°
∠АОВ = 100°
Площадь трапеции равна Sabcd=(BC+AD)/2*H=(BC+2BC)/2*H=3/2*BC*H=90. Треугольники ВКС и АКD подобны по трём углам. Коэффициент подобия ВС/AD=1/2. То есть отношение высот этих треугольников=1/2. Тогда отношение высоты треугольника ВКС к высоте трапеции АВСD равно h/H=1/3. Площадь треугольника ВКС равна Sbkc=1/2*BC*h=1/2*BC*(1/3*H)=(3/2*BC*H)*1/3*1/3=90*1/9=10. Здесь умножили и разделили на 3 чтобы выделить площадь трапеции. Далее-треугольники BLM и АКД подобны по трём углам. Коэффициент подобия ВМ/AD=1/4. Тогда отношение высоты треугольника BLM к высоте трапеции =1/5. Площадь BLM=1/2*BM*h=1/2*(1/2BC)*(1/5*H)=(3/2*BC*H)*1/10*1/3=90*1/30=3. Аналогично находим площадь треугольника MNC=3. Из подобия треугольников MNC и AND. Тогда SkLMN=SBKC-SBLM-SMNC=10-3-3=4.