Дана трапеция ABCD. Проведем две высоты к большем основанию из точек B и C. Получатся две высоты BK и CH. Рассмотрим треугольник ABK. Угол BKA = 90 градусов ( тк BK перпендикулярен AD ). Тк угол 90 градусов, то треугольник BKA - прямоугольный. Найдем сторону AK. AK = (AD-BC):2=2. Мы знаем, что в прямоугольном треугольнике катет лежащий напротив углы в 30 градусов равен половине гипотенузы, а так как AK=1/2AB, то угол ABK = 30 градусов. Тогда угол A = 180- (30+90)=60 градусов. Найдем угол B. Угол B=90+30=120 градусов. Угол B=C, а угол A=D. Тк. трапеция равнобедренная. ответ угол D=60, A=60, B=120, C=120.
2. АВ диаметр. центр находится на середине. (6+(-2))/2=4 и (5+(-1))/2=2 О(2;2) (х-2)^2+(у-2)^2=R^2
3. у-х=4 у=4+х х^`2+у^2=16 х^2+(4+х)^2=16 х^2+8х+16=16 х^2+8х+0=0 по теореме Виетта х1+х2=-4 х1*х2=0 х1=-4 х2=0 с из первого уравнения находится у у1=0 у2=4 из уравнения окружности видно что цент находится в начале координат и описаны две точки окружности (-4;0) (0;4). Также эти точки являются точками прохождения прямой. следовательно прямая пересекает окружность в этих точках
(х+3)^2+(у-7)^2=16
2. АВ диаметр. центр находится на середине. (6+(-2))/2=4 и (5+(-1))/2=2
О(2;2)
(х-2)^2+(у-2)^2=R^2
3. у-х=4 у=4+х
х^`2+у^2=16
х^2+(4+х)^2=16
х^2+8х+16=16
х^2+8х+0=0
по теореме Виетта
х1+х2=-4
х1*х2=0
х1=-4
х2=0
с
из первого уравнения находится у
у1=0
у2=4
из уравнения окружности видно что цент находится в начале координат и описаны две точки окружности (-4;0) (0;4).
Также эти точки являются точками прохождения прямой.
следовательно прямая пересекает окружность в этих точках