Управильний трикутник abc вписано півколо з центром на стороні ac, яке дотикається до сторін ab і bc у точках m і n. знайдіть довжини дуг pm, mn, nk, якщо pk = 4 см.
Треугольники даны с равными попарно сторонами и углу(не между сторонами)1)если угол вас прямой то треугольники равны(попробуй построить прямоугольный треугольник по катету и гипотенузе).252)по другому никакпопытайся построить церкулем и линейкой вот чтопрямая, отложи данный угол, отложи данную сторону, проведи окружность с длиной другой стороны и заметишь, что эта окружность пересечет противоположную сторону в двух точках(два треугольника)3)можно отдельно так же рассмотреть равнобедренный треугольник. в этом случае треугольники равны(угол при основании тупым не бывает)
Дан треугольник АВС: АВ=ВС. O- центр вписанной окружности ВО=34 см, ОН=16 см.
ВН - высота равнобедренного треугольника. ВН=50 см
К, Т.Н- точки касания окружности со сторонами треугольника.
ОК,ОН,ОТ - радиусы вписанной окружности
Найти площадь треугольника.
Решение.
Высота равнобедренного треугольника является и биссектрисой и медианой.
Значит АН=НС
Угол АВН равен углу СВН.
Треугольники КВО и ВОТ равны между собой по катету (ОК=ОТ) и острому углу.
Из равенства треугольников ВК=ВТ
По теореме Пифагора ВТ²=ВО²-ОТ²=34²-16²=(34-16)(34+16)=18·50=900
ВТ=30 см
ВК=ВТ=30 см
Центр вписанной окружности- точка пересечения биссектрис.
Треугольник равнобедренный, угол А равен углу С.
Биссектрисы АО и СО делят эти углы пополам.
Углы КАО, НАО, ТСО, НСО равны между собой.
И треугольники КАО, АОН, НОС, СОТ равны между собой по катету и острому углу.
ОК=ОН=ОТ= r - радиусу вписанной окружности.
Из равенства треугольников АК=АН=НС=СТ= х
Рассмотрим треугольник АВН.
По теореме Пифагора АВ²=АН²+ВН²
(30+х)²=х²+50²
900+60х+х²=х²=2500,
60х=1600
х=80/3
АН=80/3
S=1/2 АС·ВН= АН·ВН=80/3 · 50= 4000/3 кв. см