Упражнение 9 из 10 Реши задачу. Найди значение TR, если известно, что SF | TR и площадь треугольника KSF равна 42. T 5,6 S 20 K 15 F R Запиши в поле ответа верное число.
Пусть Н - середина ВС, тогда АН - медиана и высота в правильном треугольнике АВС. То есть АН⊥ВС. СС₁⊥(АВС), значит АН⊥СС₁. АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН. Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁). С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁). ∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника. КТ = АН/2 = √3 как средняя линия ΔАСН.
Искомое уравнение прямой - это по сути уравнение прямой по направляющему вектору и точке на прямой. В уравнении, вида: (x - x1)/a = (y-y1)/b = (z - z1)/c Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая. В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3) Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) . Теперь вспомним еще один вид уравнения прямой: Ax + By + Cz + D = 0 В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение: 2x - y + 3z + D = 0 Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим: 2*2 - 3 + 3 + D = 0 4 + D = 0 D= -4 ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0
АН⊥ВС.
СС₁⊥(АВС), значит АН⊥СС₁.
АН перпендикулярен двум пересекающимся прямым плоскости (ВСС₁), значит АН⊥(ВСС₁).
Проведем КТ║АН.
Тогда КТ⊥(ВСС₁).
Плоскость (С₁КТ) проходит через прямую КТ, перпендикулярную (ВСС₁), значит (С₁КТ)⊥(ВСС₁).
С₁КТ - искомое сечение.
С₁Т - проекция С₁К на плоскость (ВСС₁), значит ∠КС₁Т - угол между прямой С₁К и плоскостью (ВСС₁).
∠КС₁Т - искомый. Обозначим его α.
ΔАВС: АН = АВ√3/2 = 4√3/2 = 2√3 как высота равностороннего треугольника.
КТ = АН/2 = √3 как средняя линия ΔАСН.
ΔСС₁К: по теореме Пифагора
С₁К = √(СС₁² + КС²) = √(6 + 4) = √10
ΔС₁КТ: КТ - перпендикуляр к плоскости (ВСС₁), прямая С₁Т лежит в этой плоскости, значит КТ⊥С₁Т. Треугольник прямоугольный.
sinα = KT/C₁K = √3/√10
cosα = √(1 - sin²α) = √(1 - 3/10) = √(7/10) = √70/10
(x - x1)/a = (y-y1)/b = (z - z1)/c
Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая.
В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3)
Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) .
Теперь вспомним еще один вид уравнения прямой:
Ax + By + Cz + D = 0
В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение:
2x - y + 3z + D = 0
Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим:
2*2 - 3 + 3 + D = 0
4 + D = 0
D= -4
ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0