Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)
сфера вписана в конус.
осевое сечение конуса -равнобедренный треугольник и вписанная окружность.
R=S/p
р=(a+b+c)/2
SΔ=√(p(p-a)(p-b)(p-c))
прямоугольный треугольник:
катет - радиус r основания конуса, найти
гипотенуза - образующая L конуса
катет - высота конуса Н
<α - угол между образующей и радиусом основания
cosα=r/L, r=L*cosα
равнобедренный треугольник со сторонами: L, L, 2r
pΔ=(L+L+2r)/2, pΔ=L+r, pΔ=L+L*cosα, pΔ=L(1+cosα)
SΔ=√((L+r)(L+r-r)(L+r-L)(L+r-L))=√((L+r)*r² *L
SΔ=r*√(L+r)L,
SΔ= (L*cosα)*√L(1+cosα)*L,
SΔ=L*cosα*L*√(1+cosα),
SΔ=L²cosα√(1+cosα)
R= [ L²cosα√(1+cosα) ] / [ L(1+cosα) ]
R=L*cosα√(1+cosα)
Sсферы=4πR
Sсферы=4πLcosα√(1+cosα)
Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
[2]
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
[2]
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
[3]
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
[3]
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)
сфера вписана в конус.
осевое сечение конуса -равнобедренный треугольник и вписанная окружность.
R=S/p
р=(a+b+c)/2
SΔ=√(p(p-a)(p-b)(p-c))
прямоугольный треугольник:
катет - радиус r основания конуса, найти
гипотенуза - образующая L конуса
катет - высота конуса Н
<α - угол между образующей и радиусом основания
cosα=r/L, r=L*cosα
равнобедренный треугольник со сторонами: L, L, 2r
pΔ=(L+L+2r)/2, pΔ=L+r, pΔ=L+L*cosα, pΔ=L(1+cosα)
SΔ=√((L+r)(L+r-r)(L+r-L)(L+r-L))=√((L+r)*r² *L
SΔ=r*√(L+r)L,
SΔ= (L*cosα)*√L(1+cosα)*L,
SΔ=L*cosα*L*√(1+cosα),
SΔ=L²cosα√(1+cosα)
R= [ L²cosα√(1+cosα) ] / [ L(1+cosα) ]
R=L*cosα√(1+cosα)
Sсферы=4πR
Sсферы=4πLcosα√(1+cosα)
Объяснение: