В усеченном конусе радиусы оснований равны 5 см и 3 см. Через две его образующие проведено сечение плоскостью, которая отсекает от оснований дуги по 120°. Найдите площадь (в см²) сечения, если высота усеченного конуса равна √2 см.
—————————
ответ: 12 см²
Объяснение: Основания усеченного конуса параллельны, его образующие равны,⇒ основания сечения лежат в параллельных плоскостях, а плоскость сечения является равнобедренной трапецией.
Радиусы оснований и хорды, соединяющая их концы, образуют равнобедренные треугольники АОВ и СО1D c углами при вершинах О и О1, равными величине отсекаемых плоскостью сечения дуг, т.е. 120°.
Из суммы углов треугольника острые углы этих треугольников (180°-120°):2=30°.
По т. синусов АВ:sin120°=ОВ:sin30°, откуда АВ=5√3.
Аналогично СD=3√3
По свойству катета, противолежащего углу 30°, катет О1М=0,5•О1С=3/2 см.
Аналогично ОN=0,5•ОВ=0,5•5=2,5 см.
Для нахождения высоты MN трапеции АВСD проведем высоты(медианы) О1М в ∆ СO1D и ON в ∆ ВOA и опустим из М перпендикуляр МН на ОN.
ОН⊥АВ ⇒ по т. о 3-х перпендикулярах MN⊥АВ. MN - высота сечения.
OH=O1M=1,5 см
НN=2,5-1,5=1 MH=O1O=√2 см
В прямоугольном треугольнике МНN по т.Пифагора МN=√(MN^2+NH^2)=√(2+1)=√3 см
Площадь трапеции равна произведению её высоты на полусумму оснований.
ПУсть плоскость проведенная через середины ребер AB, BC, BB1 пересекает эти ребра в точках N, M, K соответственно.
Δ BMN - равнобедренный, прямоугольный ==> угол M=углу N = 45 градусов
Δ ACD - равнобедренный, прямоугольный ==> угол A=углу C = 45 градусов
==>
MN || AC(т.к соответственные углы равны, при пересечении данных прямых прямой ВС)
Δ BКN - равнобедренный, прямоугольный ==> угол К=углу N = 45 градусов
Δ ABB1 - равнобедренный, прямоугольный ==> угол A=углу B1 = 45 градусов
==>
AB1 || KN(т.к соответственные углы равны, при пересечении данных прямых прямой ВB1)
==>
плоскость ACB1 || KMN
Δ ACB1 - равносторонний(AB1=B1C=AC)
рассмотрим Δ ACD - равнобедренный, прямоугольный, ==>
по т-ме Пифагора AC^2 = AD^2+CD^2 = 2*AD^2 AC= AD* корень из 2 = 2корня из 2
Pacb1 = 3*AC = 6корней из 2
В усеченном конусе радиусы оснований равны 5 см и 3 см. Через две его образующие проведено сечение плоскостью, которая отсекает от оснований дуги по 120°. Найдите площадь (в см²) сечения, если высота усеченного конуса равна √2 см.
—————————
ответ: 12 см²
Объяснение: Основания усеченного конуса параллельны, его образующие равны,⇒ основания сечения лежат в параллельных плоскостях, а плоскость сечения является равнобедренной трапецией.
Радиусы оснований и хорды, соединяющая их концы, образуют равнобедренные треугольники АОВ и СО1D c углами при вершинах О и О1, равными величине отсекаемых плоскостью сечения дуг, т.е. 120°.
Из суммы углов треугольника острые углы этих треугольников (180°-120°):2=30°.
По т. синусов АВ:sin120°=ОВ:sin30°, откуда АВ=5√3.
Аналогично СD=3√3
По свойству катета, противолежащего углу 30°, катет О1М=0,5•О1С=3/2 см.
Аналогично ОN=0,5•ОВ=0,5•5=2,5 см.
Для нахождения высоты MN трапеции АВСD проведем высоты(медианы) О1М в ∆ СO1D и ON в ∆ ВOA и опустим из М перпендикуляр МН на ОN.
ОН⊥АВ ⇒ по т. о 3-х перпендикулярах MN⊥АВ. MN - высота сечения.
OH=O1M=1,5 см
НN=2,5-1,5=1 MH=O1O=√2 см
В прямоугольном треугольнике МНN по т.Пифагора МN=√(MN^2+NH^2)=√(2+1)=√3 см
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=MN•(CD+AB)•1/2=(3√3+5√3)•1/2=12 (см²)