Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
тогда ∠АВС = 180° - 2·30° = 120°
Проведем ВК - высоту и медиану.
Обозначим ЕС = х, АК = КВ = у. Тогда АВ = х + 8.
По свойству биссектрисы:
ВЕ : ЕС = АВ :АС
8 : x = (x + 8) : (2y)
16y = x(x + 8)
y = x(x + 8)/16
Из прямоугольного треугольника ВКС по определению косинуса:
y = BC·cos∠BCK
y = (x + 8)·√3/2
Из двух уравнений получаем:
x(x + 8)/16 = (x + 8)·√3/2
x/16 = √3/2
x = 8√3
AB = BC = 8 + 8√3 (см)
Sabc = 1/2 · AB · BC · sin120°
Sabc = 1/2 · (8 + 8√3)²·√3/2 = 16√3(√3 + 1)² = 16√3(4 + 2√3) = 32√3(2 + √3) (см²)
Объяснение:
Окружность с центром в точке А и радиусом 3 см имеет с прямой BС две общие точки. Не верно.
Поскольку прямая расстояние от центра окружности А до стороны ВС, больше радиуса окружности r<AC, r<AB, то прямая и окружность не имеют общих точек.
Окружность с центром в точке А и радиусом 8 см имеет с прямой ВС одну общую точку. Верно.
Если расстояние от центра окружности до прямой равно ее радиусу, то прямая и окружность имеют одну общую точку касания.
Окружность с центром в точке В и радиусом 17 см имеет с прямой АС две общие точки. Не верно
Поскольку радиус окружность равен гипотенузе r=AB, то А∈окружности. Остальные точки АС не имеют с окружностью общих точек, поскольку меньше радиуса окружности.
Окружность с центром в точке В и радиусом 9 см имеет с прямой AС одну общую точку. НЕ ВЕРНО
Поскольку расстояние от точки В до АС от 15 см до 17 см, то окружность с АС не имеет общих точек.
В приложении есть рисунки для демонстрации утверждений.
Подробнее - на -