№1 параллелепипед АВСДА1В1С1Д1, в основании параллелограмм АВСД, АВ=4, АД=6, уголА=60, будем считать что диагональ АД1=10 (если диагональ другой грани то результаты будут другие),
треугольник АД1Д прямоугольный, Д1Д-высота параллелепипеда=корень(АД1 в квадрате-АД в квадрате)=корень(100-36)=8, боковая поверхность=периметрАВСД*Д1Д=2*(4+6)*8=160
площадь основания АВСД=АД*АВ*sin60=4*6*корень3/2=12*корень3
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. Найдем линию пересечения плоскостей АВС и ВЕD1, к которой надо провести перпендикулярную плоскость. Для начала построим сечение BED1. Точки Е и В лежат в грани АA1В1В, следовательно ЕВ - линия пересечения этой грани и секущей плоскости. Точки Е и D1 лежат в грани АA1D1D, следовательно ЕD1 - линия пересечения этой грани и секущей плоскости. Зная, что параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, проводим ВР параллельно ED1 и D1Р параллельно ЕВ. Параллелограмм ВЕD1P - искомое сечение. Продлив прямую D1E до пересечения с продолжением ребра DA, получим точку F, принадлежащую и плоскости АВС (прямая AD принадлежит плоскости АВС) и секущей плоскости BED1 (D1E принадлежит плоскости BED1). Линия пересечения плоскостей BED1 и АВС проходит через точку В (дано). Поэтому, соединив точки F и В получим искомую линию пересечения. Теперь проведем плоскость, перпендикулярную этой линии пересечения. Для этого опустим перпендикуляр АН на FB. Плоскость AFH - искомая плоскость, так как прямая ЕА перпендикулярна плоскости АВС, а прямая ЕН перпендикулярна FB по теореме о трех перпендикулярах (АН - проекция наклонной ЕН). Искомый угол между плоскостями - это <AHE (по определению). Треугольник AFE подобен треугольнику DFD1 с коэффициентом подобия k=AE:DD1=1:3. тогда AF/FD=AF/(AF+AD)=AF/(AF+2)=1/3. Отсюда AF=1. В прямоугольном треугольнике AFB (<A=90 - дано) по Пифагору FB=√(AF²+AB²)= √(1+4)=√5. АH=AF*AB/FB (свойство высоты из прямого угла). АH=1*2/√5 = 2/√5. Тангенс искомого угла равен tg(AHE)=AE/AH = 1/(2/√5) = √5/2 ≈1,12 ответ: α = arctg(1,12) ≈ 48,2°.
№2 призма АВСДА1В1С1Д1, в основании трапеция АВСД, АВ=СД=3, АД=8, уголА=угоД=60, проводим высоты ВН и СК на АД, НВСК-прямоугольник НК=ВС, ВН=СК,
треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, треугольник АВН, уголАВН=90-уголА=90-60=30, АН=1/2АВ=3/2=1,5, ВН=АВ*sin60=3*корень3/2=1,5*корень3, НК=АД-АН-КД=8-1,5-1,5=5=ВС
треугольник АСК прямоугольный, АК=АН+НК=1,5+5=6,5, АС=корень(АК в квадрате+СК в квадрате)=корень(42,25+6,75)=7=высота призмы=ДД1=СС1=ВВ1=АА1,
боковая поверхность=периметрАВСД*ДД1=(3+3+5+8)*7=133
№1 параллелепипед АВСДА1В1С1Д1, в основании параллелограмм АВСД, АВ=4, АД=6, уголА=60, будем считать что диагональ АД1=10 (если диагональ другой грани то результаты будут другие),
треугольник АД1Д прямоугольный, Д1Д-высота параллелепипеда=корень(АД1 в квадрате-АД в квадрате)=корень(100-36)=8, боковая поверхность=периметрАВСД*Д1Д=2*(4+6)*8=160
площадь основания АВСД=АД*АВ*sin60=4*6*корень3/2=12*корень3
полная площадь=2*площадь основания+площадь боковая=2*12*корень3+160=8*(3*корень3+20)
Найдем линию пересечения плоскостей АВС и ВЕD1, к которой надо провести перпендикулярную плоскость.
Для начала построим сечение BED1.
Точки Е и В лежат в грани АA1В1В, следовательно ЕВ - линия пересечения этой грани и секущей плоскости.
Точки Е и D1 лежат в грани АA1D1D, следовательно ЕD1 - линия пересечения этой грани и секущей плоскости.
Зная, что параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, проводим ВР параллельно ED1 и D1Р параллельно ЕВ. Параллелограмм ВЕD1P - искомое сечение.
Продлив прямую D1E до пересечения с продолжением ребра DA, получим точку F, принадлежащую и плоскости АВС (прямая AD принадлежит плоскости АВС) и секущей плоскости BED1 (D1E принадлежит плоскости BED1). Линия пересечения плоскостей BED1 и АВС проходит через точку В (дано). Поэтому, соединив точки F и В получим искомую линию пересечения.
Теперь проведем плоскость, перпендикулярную этой линии пересечения.
Для этого опустим перпендикуляр АН на FB. Плоскость AFH - искомая плоскость, так как прямая ЕА перпендикулярна плоскости АВС, а прямая ЕН перпендикулярна FB по теореме о трех перпендикулярах (АН - проекция наклонной ЕН).
Искомый угол между плоскостями - это <AHE (по определению).
Треугольник AFE подобен треугольнику DFD1 с коэффициентом подобия k=AE:DD1=1:3. тогда AF/FD=AF/(AF+AD)=AF/(AF+2)=1/3.
Отсюда AF=1. В прямоугольном треугольнике AFB (<A=90 - дано) по Пифагору FB=√(AF²+AB²)= √(1+4)=√5. АH=AF*AB/FB (свойство высоты из прямого угла). АH=1*2/√5 = 2/√5.
Тангенс искомого угла равен
tg(AHE)=AE/AH = 1/(2/√5) = √5/2 ≈1,12
ответ: α = arctg(1,12) ≈ 48,2°.