Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Параллелограмм, сумма всех углов равна 360 град, сумма углов при каждом основании равна 180 град. Значит две биссектрисы, проведенный из углов при одном основании, образуют треугольник, сумма углов при основании которого равна 180/2 = 90 градусов. Значит и третий угол AKD тоже равен 90 град.
Получается прямоугольный треугольник с известными катетами, найдем гипотенузу AD:
Площадь треугольника AKD равна полупроизведению катетов, то есть
6 * 10 / 2 = 30
Высота треугольника AKD совпадает с высотой параллелограмма.
Площадь треугольника AKD также равна полупроизведению высоты на основание. Найдем высоту:
(Из этой формулы уже можно найти площадь параллелограмма, если умножим уравнение на 2 получим, что площадь параллелограмма равна двум площадям треугольника.)
Я думаю рисунок начертишь.
Параллелограмм, сумма всех углов равна 360 град, сумма углов при каждом основании равна 180 град. Значит две биссектрисы, проведенный из углов при одном основании, образуют треугольник, сумма углов при основании которого равна 180/2 = 90 градусов. Значит и третий угол AKD тоже равен 90 град.
Получается прямоугольный треугольник с известными катетами, найдем гипотенузу AD:
Площадь треугольника AKD равна полупроизведению катетов, то есть
6 * 10 / 2 = 30
Высота треугольника AKD совпадает с высотой параллелограмма.
Площадь треугольника AKD также равна полупроизведению высоты на основание. Найдем высоту:
(Из этой формулы уже можно найти площадь параллелограмма, если умножим уравнение на 2 получим, что площадь параллелограмма равна двум площадям треугольника.)
Теперь находим площадь параллелограмма: